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A SPLITTING SCHEME FOR THE NUMERICAL SOLUTION OF

THE KOBAYASHI-WARREN-CARTER SYSTEM

R.H.W. HOPPE1 AND J.J. WINKLE2

Abstract. We consider a splitting method for the numerical solution of the

regularized Kobayashi-Warren-Carter (KWC) system which describes the
growth of single crystal particles of different orientations in two spatial di-

mensions. The KWC model is a system of two nonlinear parabolic PDEs rep-

resenting gradient flows associated with a free energy in two variables. Based
on an implicit time discretization by the backward Euler method, we suggest

a splitting method and prove the existence as well as the energy stability of

a solution. The discretization in space is taken care of by Lagrangian finite
elements with respect to a geometrically conforming, shape regular, simplicial

triangulation of the computational domain and requires the successive solution

of two individual discrete elliptic problems. Viewing the time as a parameter,
the fully discrete equations represent a parameter dependent nonlinear system

which is solved by a predictor corrector continuation strategy with an adaptive
choice of the time step size. Numerical results illustrate the performance of

the splitting method.

1. Introduction

The Kobayashi-Warren-Carter (KWC) system is an orientation field based multi-
phase field model describing the growth of single crystal particles of different ori-
entations in two spatial dimensions. It has been originally suggested in [19, 31] (cf.
also [25, 32]) and further studied in [14, 15, 16]. We refer to the monograph [25] for
further references. The KWC model is a system of two nonlinear parabolic PDEs
representing gradient flows associated with a free energy in two variables, namely
the orientation angle and the orientation order (local degree of crystallinity). In
particular, the equation with regard to the orientation angle is a second order total
variation flow. A mathematical analysis of the KWC system has been provided in
[11, 18, 21, 22] mainly focusing on results concerning the existence of a solution.
Splitting methods for the numerical solution of PDEs go back to the seminal work
[24] and have been further studied in [28] (cf. also the monographs [13, 30] and the
review article [20] as well as the references therein).
In this paper, we consider a standard regularization of the total variation flow
and focus on an approximation of the thus regularized KWC system by a splitting
scheme based on an implicit discretization in time by the backward Euler method.
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The splitting allows to treat the problems in the orientation angle and the orien-
tation order independently at each time step. We prove the existence and energy
stability of a solution. For discretization in space we use Lagrangian finite elements
with respect to a geometrically conforming, shape regular, simplicial triangulation
of the computational domain. Considering the time as a parameter, the fully dis-
crete nonlinear equations represent a parameter dependent nonlinear system which
is solved by a predictor-corrector continuation strategy (cf. [6, 17]). This strategy
consists of constant continuation as a predictor and Newton’s method as a corrector
and features an adaptive choice of the time step. Numerical results are provided
that illustrate the performance of the splitting scheme.

In this paper, we use standard notation from Lebesgue and Sobolev space theory
(cf., e.g., [29]) and the theory of functions of bounded variation (cf., e.g., [1, 7, 12])
and functions of weighted bounded variation (cf. [2]). In particular, for a bounded
domain Ω ⊂ Rd, d ∈ N, we refer to Lp(Ω), 1 ≤ p <∞, as the Banach space of p-th
power Lebesgue integrable functions on Ω with norm ‖ · ‖0,p,Ω and to L∞(Ω) as the
Banach space of essentially bounded functions on Ω with norm ‖ · ‖0,∞,Ω. Given a
Muckenhoupt weight function ω of class Ap, 1 ≤ p <∞, [23, 27], the space Lp(Ω;ω)
is the Banach space of weighted p-th power Lebesgue integrable functions u on Ω
with norm ‖u‖0,p,ω,Ω := (

∫
Ω
ω|u|p dx)1/p.

Further, we denote by W s,p(Ω), s ∈ R+, 1 ≤ p ≤ ∞, the Sobolev spaces with norms
‖ · ‖s,p,Ω. We note that for p = 2 the spaces L2(Ω) and W s,2(Ω) = Hs(Ω) are
Hilbert spaces with inner products (·, ·)0,2,Ω and (·, ·)s,2,Ω. In the sequel, we will
suppress the subindex 2 and write (·, ·)0,Ω, (·, ·)s,Ω and ‖ · ‖0,Ω, ‖ · ‖s,Ω instead of
(·, ·)0,2,Ω, (·, ·)s,2,Ω and ‖ · ‖0,2,Ω, ‖ · ‖s,2,Ω.
Moreover, for a Muckenhoupt weight function ω of class A1 we denote by BV (Ω;ω)
the Banach space of functions u ∈ L1(Ω;ω) such that

varωu(Ω) := sup {−
∫

Ω

u∇ · q dx,q ∈ C1
0 (Ω;R2), |q| ≤ ω in Ω} <∞,

equipped with the norm

‖u‖BV (Ω;ω) := ‖u‖0,1,ω,Ω + varωu(Ω).

2. The Kobayashi-Warren-Carter system

The Kobayashi-Warren-Carter system is an orientation field based multi-phase
field approach where the associated free energy functional is given in terms of an
orientation field Θ, which locally describes the crystallographic orientation, and a
structural order parameter φ, which is called the orientation order and describes
the local degree of crystallinity. For a bounded convex domain Ω with boundary
Γ = ∂Ω the free energy reads as follows:

F (Θ, φ)) =

∫

Ω

(
s(∇φ,Θ)2 |∇φ|2 + g(φ)

)
dx+H

∫

Ω

ω(φ)|∇Θ| dx.(2.1)
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Here, the function s = s(η, γ),η = (η1, η2)T ∈ R2, γ ∈ R, refers to the anisotropy
function

s(η, γ) = 1 + s0 cos(mSϑ− 2πγ),(2.2a)

ϑ =

{
π/2 , if η1 = 0,

arctan(χεa(η2/η1)) , otherwise
,(2.2b)

where 0 ≤ s0 � 1 is the amplitude of the anisotropy of the interfacial free
energy, mS is the symmetry index (e.g., mS = 4 for fourfold symmetry), and
χεa ∈ C2(R), 0 < εa ≤ 1, is a smooth approximation of χ(x) = |x|, x ∈ R, with
χεa(x) = χ(x), |x| ≥ εa, χ′εa(±εa) = ±1, χ′′εa(±εa) = 0, and χεa(0) = 0, e.g., we
may choose

χεa(x) =

{
|x| , |x| ≥ εa

15
8 ε
−1
a x2 − 5

4ε
−3
a x4 + 3

8ε
−5
a x6 , |x| ≤ εa .(2.3)

We note that ϑ is related to the inclination of the normal vector of the interface
in the laboratory frame. The constant H > 0 stands for the free energy of the
low-grain boundaries. The function g is the quartic double-well function

g(η) =
1

4
η2 (1− η)2,(2.4)

and the function ω is given by

ω(η) =





εr , η ≤ 0
εr + 2(2− 3εr)η

2 − 4(1− εr)η3 + η4 , 0 ≤ η ≤ 1
1− εr , η ≥ 1

, η ∈ R,(2.5)

where 0 < εr � 1, interpolating between (0, εr) and (1, 1 − εr). Moreover, the
constant H > 0 stands for the free energy of the low-angle grain boundaries. The
functions g and ω have the following properties

g(η) ≥ 0, η ∈ R,(2.6a)

εr ≤ ω(η) ≤ 1− εr, η ∈ R.(2.6b)

The second integral in (2.1) has to be interpreted as the weighted total variation

∫

Ω

ω(φ)|∇Θ| dx = varωΘ(Ω), Θ ∈ BV (Ω;ω).(2.7)

We note that the contribution of Θ to the free energy gives rise to a second order
total variation flow. An appropriate way to handle the difficulties associated with
that term is to provide a regularization by means of a regularization parameter
0 < κΘ � 1, i.e., instead of (2.1) we consider the regularized free energy

F (Θ, φ) =

∫

Ω

(
s(∇φ,Θ)2 |∇φ|2 + g(φ)

)
dx+H

∫

Ω

ω(φ)(κΘ + |∇Θ|2)1/2 dx.

(2.8)
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For the second integral in (2.8) we have (cf. [1, 10] for BV functions):

∫

Ω

ω(φ)(κΘ + |∇Θ|2)1/2 dx = var(κΘ)
ω Θ(Ω), Θ ∈ BV (Ω;ω),

(2.9)

var(κΘ)
ω Θ(Ω) :=

sup{
∫

Ω

(−Θ∇ · q + κ
1/2
Θ (ω(φ)− |q|2)1/2 dx, q ∈ C1

0 (Ω;R2), |q| ≤ ω(φ) in Ω}.

We split the regularized free energy (2.8) according to

F (Θ, φ) = F (1)(Θ, φ) + F (2)(Θ, φ),(2.10)

F (1)(Θ, φ) :=

∫

Ω

(
s(∇φ,Θ)2 |∇φ|2 + g(φ)

)
dx,

F (2)(Θ, φ) := Hvar(κΘ)
ω Θ(Ω).

Denoting by Mφ > 0 and MΘ > 0 the mobilities associated with the phase field
variables φ and Θ, the dynamics of the crystallization process are given by the
evolution inclusion

∂Θ

∂t
+MΘ

δF (1)

δΘ
(Θ, φ) ∈ −MΘ ∂ΘF

(2)(Θ, φ),(2.11a)

and the evolution equation

∂φ

∂t
= −Mφ

δF

δφ
(Θ, φ).(2.11b)

Here, δF
(1)

δΘ and δF
δφ are the partial Gâteaux derivatives of F (1) and F with respect

to Θ and φ, whereas ∂ΘF
(2) stands for the subdifferential of F (2) with respect to

Θ.

The phase field model (2.11a),(2.11b) can be formally written as an initial-boundary
value problem for a system of evolutionary partial differential equations consisting
of two nonlinear second order parabolic equations in Θ and φ. We set a(η, γ) =
(aij(η, γ))2

i,j=1 with

a11(η, γ) = a22(η, γ) = s(η, γ)2, a12(η, γ) = −a21(η, γ) = −s(η, γ)
∂s(η, γ)

∂ϑ
.

(2.12)

We further define

z(φ,Θ) := MΘs(∇φ,Θ)
∂s(∇φ,Θ)

∂Θ
,(2.13)

r(φ,Θ) :=g′(φ) + ω′(φ)H(κΘ + |∇Θ|2)1/2.

Setting Q := Ω × (0, T ), Σ := Γ × (0, T ), where T > 0 is the final time, and
specifying appropriate boundary conditions and initial conditions for all phase field
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variables, the initial-boundary problem reads

∂Θ

∂t
= MΘH∇ · (ω(φ)(κΘ + |∇Θ|2)−1/2∇Θ) + z(φ,Θ)|∇φ|2,(2.14a)

∂φ

∂t
= Mφ∇ · (a(∇φ,Θ)∇φ)−Mφr(φ,Θ), in Q(2.14b)

nΓ · ω(φ)(κΘ + |∇Θ|2)−1/2∇Θ = 0 on Σ,(2.14c)

nΓ · a(∇φ,Θ)∇φ = 0 on Σ,(2.14d)

Φ(·, 0) = Φ0, Θ(·, 0) = Θ0 in Ω.(2.14e)

A weak solution of (2.14a)-(2.14e) is a pair (Θ, φ) with

Θ ∈W 1,1(Ω) ∩ L∞(Ω),
∂Θ

∂t
∈ L2(Ω),(2.15a)

φ ∈W 1,2(Ω) ∩ L∞(Ω),
∂φ

∂t
∈ L2(Ω),(2.15b)

such that for all

v1 ∈W 1,1(Ω) ∩ L∞(Ω), v2 ∈W 1,2(Ω) ∩ L∞(Ω)

it holds
∫

Ω

∂Θ

∂t
v1 dx+H

∫

Ω

MΘω(φ)(κΘ + |∇Θ|2)−1/2∇Θ · ∇v1 dx(2.16a)

−
∫

Ω

z(φ,Θ)|∇φ|2v1 dx = 0,

∫

Ω

∂φ

∂t
v2 dx+

∫

Ω

Mφ

(
a(∇φ,Θ)∇φ · ∇v2 + r(φ,Θ)v2

)
dx = 0.(2.16b)

Remark 2.1. The mobilities MΘ and Mφ may depend on φ according to

Mφ = M(φ) = M0(1− ω(φ)), M0 > 0,(2.17a)

MΘ(φ) = χM(φ), χ = 0.5 or χ = 0.05.(2.17b)

In this case, we replace MΘ in (2.16a) by MΘ(φ) and Mφ in (2.16b) by M(φ).

3. The splitting scheme

We consider a discretization in time with respect to a partition of the time
interval [0, T ] into subintervals [tm−1, tm], 1 ≤ m ≤ M,M ∈ N, of length τm :=
tm − tm−1. We denote by Θm and φm approximations of Θ and φ at time tm and
discretize (2.16) implicitly in time by the backward Euler method: Given Θm−1 ∈
BV (Ω;ω(φm−1)) and φm−1 ∈W 1,2(Ω), 1 ≤ m ≤M, compute Θm ∈ BV (Ω;ω(φm))
and φm ∈W 1,2(Ω) such that it holds

Θm −Θm−1 +MΘτm
δF (1)

δΘ
(Θm, φm) ∈ −MΘ∂ΘF

(2)(Θm, φm),(3.1a)

φm − φm−1 = −Mφτm
δF

δφ
(Θm, φm).(3.1b)
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The splitting scheme for the solution of (3.1) is such that we first compute Θm ∈ V
as the solution of

Θm −Θm−1 +MΘτm
δF (1)

δΘ
(Θm, φm−1) ∈ −MΘτm∂ΘF

(2)(Θm, φm−1),(3.2a)

and then compute φm ∈W 1,2(Ω) satisfying

φm − φm−1 = −Mφτm
δF

δφ
(Θm, φm).(3.2b)

We will prove that both (3.2a) and (3.2b) have a solution by showing that the
equations are the necessary optimality conditions of unconstrained minimization
problems admitting local minimizers. We begin with (3.2a) and we introduce the
energy functional

Fm,τm1 (Θ) :=
1

2
‖Θ−Θm−1‖20,Ω + τm F1(Θ, φm−1),(3.3)

F1(Θ, φm−1) := HMΘ var
(κΘ)
ω(φm−1)Θ(Ω) +

MΘ

∫

Ω

(
s(∇φm−1,Θ)2|∇φm−1|2 + g(φm−1)

)
dx.

Theorem 3.1. The energy functional Fm,τm1 : V → R has a local minimizer Θm ∈
V , i.e.,

Fm,τm1 (Θm) = inf
Θ∈V

Fm,τm1 (Θ).(3.4)

Proof. We first show that the energy functional Fm,τm1 is coercive on V . We have

1

2
‖Θ−Θm−1‖20,Ω ≥

1

4
‖Θ‖20,Ω −

1

2
‖Θm−1‖20,Ω.(3.5)

Moreover, observing (2.2), we get

MΘ

∫

Ω

s(∇φm−1,Θ)2|∇φm−1|2 dx ≥MΘ(1− s0)2‖∇φm−1‖20,Ω.(3.6)

Combining (3.5) and (3.6) gives

Fm,τm1 (Θ) ≥ 1

4
‖Θ‖20,Ω +HMΘτm var

(κΘ)
ω(φm−1)Θ(Ω) +(3.7)

MΘ(1− s0)2τm‖∇φm−1‖20,Ω +MΘτm

∫

Ω

g(φm−1) dx− 1

2
‖Θm−1‖20,Ω,

from which we conclude, observing BV (Ω;ω(φm−1)) ⊂ L2(Ω;ω(φm−1)) ⊂ L2(Ω)

and var
(κΘ)
ω(φm−1)Θ(Ω) ≥ varω(φm−1)Θ(Ω).

The functional F1(Θ, φm−1) is not convex in Θ. We split it according to

F1(Θ, φm−1) = F1,1(Θ, φm−1) + F1,2(Θ, φm−1),

where F1,1(Θ, φm−1) and F1,2(Θ, φm−1) are given by

F1,1(Θ, φm−1) := HMΘ var
(κΘ)
ω(φm−1)Θ(Ω),

F1,2(Θ, φm−1) := MΘ

∫

Ω

(
s(∇φm−1,Θ)2|∇φm−1|2 + g(φm−1)

)
dx,
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and we define

Fm,τm1,1 (Θ) :=
1

2
‖Θ−Θm−1‖20,Ω + τm F1,1(Θ, φm−1).(3.8)

To prove the existence of a local minimizer, let (Θn)n∈N,Θn ∈ V, n ∈ N, be a
minimizing sequence. Due to the coercivity of Fm,τm1,1 , the sequence is bounded and

hence, there exist N′ ⊂ N and Θm ∈ V such that for N′ 3 n → ∞ it holds (cf.
Theorem 5.1 in [2])

Θn → Θm in Lq(Ω, ω(φm1)), 1 ≤ q < 2,(3.9a)

Θn ⇀ Θm in L2(Ω).(3.9b)

In view of (3.9a) we have the following semicontinuity property (cf. Theorem 3.2
in [2])

var
(κΘ)
ω(φm−1)Θ

m(Ω) ≤ lim inf
N′3n→∞

var
(κΘ)
ω(φm−1)Θn(Ω).(3.10)

Further, it follows from (3.9b) that

‖Θm −Θm−1‖20,Ω ≤ lim inf
N′3n→∞

‖Θn −Θm−1‖20,Ω.(3.11)

Due to the continuity of s we also have

MΘs(∇φm−1,Θn)2 →MΘs(∇φm−1,Θm)2

almost everywhere in Ω as N′′ 3 n→∞.
Moreover, the sequence {MΘs(∇φm−1,Θn)2|∇φm−1|2}n∈N′′ is uniformly integrable
and MΘs(∇φm−1,Θm)2|∇φm−1|2 ∈ L1(Ω). The Vitali convergence theorem (cf.,
e.g., [26]) yields

F1,2(Θm, φm−1) = lim
N′′3n→∞

F1,2(Θn, φ
m−1).(3.12)

Hence, (3.10)-(3.12) imply

Fm,τm1 (Θm) ≤ lim infn→∞F
m,τm
1 (Θn),(3.13)

which allows to conclude. �

Next, we consider the energy functional

Fm,τm2 (φ) :=
1

2
‖φ− φm−1‖20,Ω + τmF2(Θm, φ),(3.14)

F2(Θm, φ)) := Mφ

∫

Ω

(
s(∇φ,Θm)2 |∇φ|2 + g(φ)

)
dx +

HMφ var
(κΘ)
ω(φm)Θ

m(Ω).

Theorem 3.2. For sufficiently small s0 > 0, the energy functional Fm,τm2 : W 1,2(Ω)→
R has a local minimizer φm ∈W 1,2(Ω), i.e.,

Fm,τm2 (φm) = inf
φ∈W 1,2(Ω)

Fm,τm2 (φ).(3.15)



8 R.H.W. HOPPE1 AND J.J. WINKLE2

Proof. We first show that the functional Fm,τm2 is coercive on W 1,2(Ω): By Young’s
inequality we find

1

2
‖φ− φm−1‖20,Ω ≥

1

4
‖φ‖20,Ω −

1

2
‖φm−1‖20,Ω.(3.16)

Further, we take advantage of (2.6) to conclude

Fm,τm2 (φ) ≥ Mφεr(1− s0)2τm‖∇φ‖20,Ω +
1

4
‖φ‖20,Ω −

1

2
‖φm−1‖20,Ω.(3.17)

The functional F2(Θm, φ) is not convex in φ, but it can be split into a convex part
F2,1(Θm, φ) and non-convex part F2,2(Θm, φ) according to

F2,1(Θm, φ) :=
1

2
‖φ− φm−1‖20,Ω + τmMφ

∫

Ω

s(∇φ,Θm)2|∇φ|2 dx,

F2,2(Θm, φ) := Mφ

∫

Ω

g(φ) dx+Mφvar
(κΘ)
ω(φm)Θ

m(Ω).

The convexity of the first part ‖φ−φm−1‖20,Ω/2 of F2,1(Θm, φ) is obvious. As far as

the convexity of the second part is concerned, for fixed γ ∈ R we define g1 ∈ C2(R2)
by

g1(η) := (1 + s0cos(mSϑ− 2πγ)))2(η2
1 + η2

2), η = (η1, η2) ∈ R2,

where ϑ is given by (2.2b). Computing the second partial derivatives ∂2g1/∂η
2
i , 1 ≤

i ≤ 2, and ∂2g1/(∂η1∂η2), it can be shown that for sufficiently small s0 the Hessian
of g1 is positive definite, i.e., there exists α > 0 such that

2∑

i,j=1

∂2g1

∂ηi∂ηj
ξiξj ≥ α|ξ|2 for all ξ = (ξ1, ξ2)T ∈ R2.

In order to prove the existence of a local minimizer let {φn}N, φn ∈ W 1,2(Ω), be a
minimizing sequence, i.e., it holds

Fm,τm2 (φn)→ inf
φ∈W 1,2(Ω)

Fm,τm2 (φ) (n→∞).(3.18)

Due to the coercivity of Fm,τm2 the sequence {φn}N is bounded in W 1,2(Ω). Hence,
there exists a weakly convergent subsequence, i.e., there exist N′ ⊂ N and φm ∈
W 1,2(Ω) such that φn ⇀ φm (N′ 3 n → ∞) in W 1,2(Ω). The Rellich-Kondrachev
theorem implies strong convergence in Lp(Ω) for any 1 ≤ p < ∞ and hence, for

some subsequence N′′ ⊂ N′ we have

φn → φm almost everywhere in Ω as N
′′ 3 n→∞.

Due to the continuity of g and ω, we also have

g(φn)→ g(φm) almost everywhere in Ω as N
′′ 3 n→∞,

ω(φn)→ ω(φm) almost everywhere in Ω as N
′′ 3 n→∞.

The sequence {Mφg(φn)}n∈N′′ is uniformly integrable and Mφg(φm) ∈ L1(Ω).
Again, the Vitali convergence theorem implies

Mφ

∫

Ω

g(φn) dx→Mφ

∫

Ω

g(φm) dx as N′′ 3 n→∞.(3.19)
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Moreover, since ω(φn)→ ω(φm) almost everywhere in Ω as N′′ 3 n→∞, we have

var
(κΘ)
ω(φn)Θ

m(Ω)→ var
(κΘ)
ω(φm)Θ

m(Ω) as N′′ 3 n→∞.(3.20)

Obviously, the functional F2,1(Θm, ·) is continuous on W 1,2(Ω) and thus lower semi-
continuous. As we have shown before, it is convex and hence, it is weakly lower
semicontinuous. This gives

F2,1(Θm, φm) ≤ lim infN′′3n→∞F2,1(Θm, φn).(3.21)

Now, (3.18),(3.19),(3.20), and (3.21) imply that (3.15) holds true. �

We show that each time step the splitting scheme leads to a decrease of the regu-
larized free energy.

Theorem 3.3. The splitting scheme is energy stable with respect to the regularized
free energy (2.8), i.e., it holds

F (Θm, φm) ≤ F (Θm−1, φm−1), m ≥ 1.(3.22)

Proof. From Theorem 3.1 and Theorem 3.2 we deduce

Fm,τm1 (Θm) =
1

2
‖Θm −Θm−1‖20,Ω + τmF1(Θm, φm−1)(3.23a)

≤ Fm,τm1 (Θm−1) = τmF1(Θm−1, φm−1),

Fm,τm2 (φm) =
1

2
‖φm − φm−1‖20,Ω + τmF2(Θm, φm)(3.23b)

≤ Fm,τm2 (φm−1) = τmF2(Θm, φm−1).

Moreover, in view of (2.10),(3.3), and (3.14) we have

F1(Θm, φm−1) = MΘF (Θm, φm−1)) and F2(Θm, φm−1) = MφF (Θm, φm−1)),

(3.24a)

F1(Θm−1, φm−1) = MΘF (Θm−1, φm−1)) and F2(Θm, φm) = MφF (Θm, φm)).

(3.24b)

From (3.24a) we deduce that

F1(Θm, φm−1) =
MΘ

Mφ
F2(Θm, φm−1).(3.25)

It follows from (3.23a),(3.23b), and (3.25) that

τmF2(Θm, φm) ≤ Fm,τm2 (φm) ≤ τmF2(Θm, φm−1) =(3.26)

τm
Mφ

MΘ
F1(Θm, φm−1) =

Mφ

MΘ

(
Fm,τm1 (Θm)− 1

2
‖Θm −Θm−1‖20,Ω

)
≤

Mφ

MΘ
Fm,τm1 (Θm) ≤ τm

Mφ

MΘ
F1(Θm−1, φm−1).

In view of (3.24b), (3.22) is a consequence of (3.26). �

Remark 3.1. Theorem 3.1 and Theorem 3.2 provide the existence of a solution of
the splitting scheme, but do not imply uniqueness due to the presence of the non-
convex parts F1,2(Θ, φm−1) and F2,2(Θm, φ) of Fm,τm1 (Θ) and Fm,τm2 (φ). However,
for related problems such as the Allen-Cahn and the Cahn-Hilliard equation, epitax-
ial thin film models, and the phase field crystal equation, convex-concave splittings
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of the energy functionals have been suggested that guarantee both uniqueness of a
solution and energy stability (cf. [3, 4, 8, 9] and the references therein). Similar
convex-concave splittings

F1,2(Θ, φm−1) = F̃1,2(Θ, φm−1) + F̂1,2(Θ, φm−1),

F2,2(Θm, φ) = F̃2,2(Θm, φ) + F̂2,2(Θm, φ)

into strongly convex parts F̃1,2(Θ, φm−1), F̃2,2(Θm, φ) and concave parts F̂1,2(Θ,

φm−1), F̂2,2(Θm, φ) can be applied here as well according to

F̃1,2(Θ, φm−1) = F1,2(Θ, φm−1) +G1,2(Θ, φm−1), F̂1,2(Θ, φm−1) = −G1,2(Θ, φm−1),

F̃2,2(Θm, φ) = F2,2(Θm, φ) +G2,2(Θm, φ), F̂2,2(Θm, φ) = −G2,2(Θm, φ),

where G1,2(Θ, φm−1) and G2,2(Θm, φ) are appropriately chosen strongly convex
functions in Θ and φ, respectively. The splitting scheme based on the convex-
concave decomposition reads

Θm −Θm−1 +MΘτm
δF̃1,2

δΘ
(Θm, φm−1) ∈

−MΘτm∂ΘF
(2)(Θm, φm−1)−MΘτm

δF̂1,2

δΘ
(Θm−1, φm−1),

φm − φm−1 +Mφτm
δ(F2,1 + F̃2,2)

δφ
(Θm, φm) = −Mφτm

δF̂2,2

δφ
(Θm, φm−1).

For sufficiently smooth time-discrete phase field varibales Θm and φm, the optimal-
ity conditions (3.1a),(3.1b) can be written as the following two individual elliptic
boundary value problems

Θm −HMΘτm∇ · (ω(φm−1)(κΘ + |∇Θm|2)−1/2∇Θm) −(3.27a)

τmz(φ
m−1,Θm)|∇Θm|2 = Θm−1 in Ω,

nΓ · (ω(φm−1)(κΘ + |∇Θm|2)−1/2∇Θm) = 0 on Γ,(3.27b)

and

φm −Mφτm∇ · (a(∇φm,Θm)∇φm) +(3.28a)

Mφτmr(φ
m,Θm) = φm−1 in Ω,

nΓ · a(∇φm,Θm)∇φm = 0 on Γ.(3.28b)

A weak solution of (3.27a),(3.27b), and (3.28a),(3.28b) is a pair (Θm, φm) with
Θm ∈W 1,1(Ω)∩L∞(Ω) and φm ∈W 1,2(Ω)∩L∞(Ω) such that for all v1 ∈W 1,1(Ω)∩



A SPLITTING SCHEME FOR THE KOBAYASHI-WARREN-CARTER SYSTEM 11

L∞(Ω) and v2 ∈W 1,2(Ω) ∩ L∞(Ω) it holds

(Θm, v1)0,Ω +Hτm

∫

Ω

MΘω(φm−1)(κΘ + |∇Θm|2)−1/2∇Θm · ∇v1 dx(3.29a)

− τm
∫

Ω

z(φm−1
h ,Θm

h )|∇φm−1
h |2 v1 dx = (Θm−1

h , v1)0,Ω,

(φmh , v2)0,Ω + τm

∫

Ω

Mφa(∇φmh ,Θm
h )∇φmh · ∇v2 dx(3.29b)

+ τm

∫

Ω

Mφr(φ
m,Θm) v2 dx = (φm−1, v2)0,Ω.

4. Discretization in space and numerical solution of the fully
discretized system

For discretization in space of the implicitly in time discretized and split KWC
system (3.2a),(3.2b) we assume Th(Ω) to be a geometrically conforming, shape
regular, simplicial triangulation of the computational domain Ω. Denoting by
Pk(K), k ∈ N,K ∈ Th(Ω), the linear space of polynomials of degree ≤ k on K,
we refer to

Vh := {vh ∈ C(Ω̄) | vh|K ∈ Pk(K),K ∈ Th(Ω)}
as the finite element space of continuous piecewise polynomial Lagrangian finite
elements (cf., e.g., [5]). Then, in case of variable mobilities (2.17a),(2.17b), the
finite element approximation of (3.2a),(3.2b) reads as follows (cf. (3.29a),(3.29b)):
Given φm−1

h , find Θm
h , φ

m
h ∈ Vh such that for all vh ∈ Vh and wh ∈ Vh it holds

(Θm
h , vh)0,Ω +Hτm(MΘ(φm−1

h )ω(φm−1
h )(κΘ + |∇Θm

h |2)−1/2∇Θm
h ,∇vh)0,Ω(4.1a)

− τm(z(φm−1
h ,Θm

h )|∇φm−1
h |2, vh)0,Ω = (Θm−1

h , vh)0,Ω,

(φmh , wh)0,Ω + τm(M(φm−1
h )a(∇φmh ,Θm

h )∇φmh ,∇wh)0,Ω(4.1b)

+ τm(M(φm−1
h )r(φmh ,Θ

m
h ), wh)0,Ω = (φm−1

h , wh)0,Ω.

Remark 4.1. We note that the discrete splitting scheme (4.1a),(4.1b) is such that
it requires the successive solution of two individual discrete elliptic equations.

The numerical solution of (4.1a) and (4.1b) amounts to the successive solution of
two nonlinear algebraic systems. We assume Vh = span{ϕ1, · · · , ϕNh

}, Nh ∈ N,
such that

Θm
h =

Nh∑

j=1

Θm
j ϕj , φmh =

Nh∑

j=1

φmj ϕj .

Setting Θm := (Θm
1 , · · · ,Θm

Nh
)T and Φm := (φm1 , · · · , φmNh

)T , the algebraic formu-
lation of (4.1a) and (4.1b) leads to the two nonlinear systems

F1(Θm,Φm−1, tm) = 0,(4.2a)

F2(Θm,Φm, tm) = 0.(4.2b)
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Here, Fk : RNh×RNh×R+ → RNh and the components Fk,i, 1 ≤ i ≤ Nh, are given
by

F1,i(Θ
m,Φm−1, tm) =

Nh∑

j=1

Θm
j (ϕj , ϕi)0,Ω +

Hτm

Nh∑

j=1

Θm
j (MΘ(Φm−1)ω(Φm−1)(κΘ + |

Nh∑

k=1

Θm
k ∇ϕk|2)−1/2∇ϕj ,∇ϕi)0,Ω

− τm(z(Φm−1,Θm)|
Nh∑

k=1

Φm−1∇ϕk|2, ϕi)0,Ω −
Nh∑

j=1

Θm−1
j (ϕj , ϕi)0,Ω

and

F2,i(Θ
m,Φm, tm) =

Nh∑

j=1

φmj (ϕj , ϕi)0,Ω +

τm

Nh∑

j=1

φmj (M(Φm−1)a(Φm,Θm)∇ϕj ,∇ϕi)0,Ω +

τm(M(Φm−1)r(Φm,Θm), ϕi)0,Ω −
Nh∑

j=1

φm−1
j (ϕj , ϕi)0,Ω,

where

MΘ(Φm−1) := MΘ(

Nh∑

k=1

φm−1
k ϕk), M(Φm−1) := M(

Nh∑

k=1

φm−1
k ϕk),

ω(Φm−1) := ω(

Nh∑

k=1

φm−1
k ϕk), z(Φm−1,Θm) := z(

Nh∑

k=1

φm−1
k ϕk,

Nh∑

k=1

Θm
k ϕk),

a(Φm,Θm) := a(

Nh∑

k=1

φmk ∇ϕk,
Nh∑

k=1

Θm
k ϕk), r(Φm,Θm) := r(

Nh∑

k=1

φmk ϕk,

Nh∑

k=1

Θm
k ϕk).

The nonlinear systems (4.2a) and (4.2b) can be solved by Newton’s method, but the
problem is the appropriate choice of the time step sizes τm, 1 ≤ m ≤M, in order to
guarantee convergence of Newton’s method. In fact, a uniform choice τm = T/M
only works, if M is chosen sufficiently large which would require an unnecessary
huge amount of time steps. In particular, this applies to (4.2a) reflecting the sin-
gular character of the second order total variation flow problem. An appropriate
way to overcome this difficulty is to consider (4.2a),(4.2b) as parameter dependent
nonlinear systems with the time as a parameter and to apply a predictor corrector
continuation strategy with an adaptive choice of the time steps (cf., e.g., [6, 17]).
Given the pair (Θm−1,Φm−1), the time step size τm−1,0 = τm−1, and setting k = 0,
where k is a counter for the predictor corrector steps, the predictor step for (4.2a)
consists of constant continuation leading to the initial guesses

Θ(m,k) = Θm−1, tm = tm−1 + τm−1,k.(4.3)
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Setting ν1 = 0 and Θ(m,k,ν1) = Θ(m,k), for ν1 ≤ νmax, where νmax > 0 is a
pre-specified maximal number, the Newton iteration

F′(Θ(m,k,ν1),Φm−1, tm)∆Θ(m,k,ν1) = − F1(Θ(m,k,ν1),Φm−1, tm),(4.4)

Θ(m,k,ν1+1) = Θ(m,k,ν1) + ∆Θ(m,k,ν1), ν1 ≥ 0,

serves as a corrector whose convergence is monitored by the contraction factor

Λ
(m,k,ν1)
Θ =

‖∆Θ(m,k,ν1)‖
‖∆Θ(m,k,ν1)‖

,(4.5)

where ∆Θ(m,k,ν1) is the solution of the auxiliary Newton step

F′1(Θ(m,k,ν1),Φm−1, tm)∆Θ(m,k,ν1) = − F1(Θ(m,k,ν1+1),Φm−1, tm).(4.6)

If the contraction factor satisfies

Λ
(m,k,ν1)
Θ <

1

2
,(4.7)

we set ν1 = ν1 + 1. If ν1 > νmax, both the Newton iteration and the predictor
corrector continuation strategy are terminated indicating non-convergence. Other-
wise, we continue the Newton iteration (4.4). If (4.7) does not hold true, we set
k = k + 1 and the time step is reduced according to

τm,k = max(

√
2− 1√

4Λ
(m,k,ν1)
Θ + 1− 1

τm,k−1, τmin),(4.8)

where τmin > 0 is some pre-specified minimal time step. If τm,k > τmin, we go back
to the prediction step (4.3). Otherwise, the predictor corrector strategy is stopped
indicating non-convergence. The Newton iteration is terminated successfully, if for
some ν∗1 > 0 the relative error of two subsequent Newton iterates satisfies

‖Θ(m,k,ν∗1 ) −Θ(m,k,ν∗1−1)‖
‖Θ(m,k,ν∗1 )‖

< ε(4.9)

for some pre-specified accuracy ε > 0. In this case, we proceed with the prediction
step (4.10) below.
The predictor step for (4.2b) also consists of constant continuation leading to the
initial guesses

Φ(m,k) = Φm−1, tm = tm−1 + τm−1,k.(4.10)

Setting ν2 = 0 and Φ(m,k,ν2) = Φ(m,k), for ν2 ≤ νmax, the Newton iteration

F′2(Θ(m,k,ν∗1 ),Φm,k,ν2 , tm)∆Φ(m,k,ν2) = − F2(Θ(m,k,ν∗1 ),Φm,k,ν2 , tm),(4.11)

Φ(m,k,ν2+1) = Φ(m,k,ν2) + ∆Φ(m,k,ν2), ν2 ≥ 0,

again serves as the corrector with the convergence monitored by the contraction
factor

Λ
(m,k,ν2)
φ =

‖∆Φ(m,k,ν2)‖
‖∆Φ(m,k,ν2)‖

,(4.12)

where ∆Φ(m,k,ν2) is the solution of the auxiliary Newton step

F′2(Θ(m,k,ν∗1 ),Φm,k,ν2 , tm)∆Φ(m,k,ν2) = − F2(Θ(m,k,ν∗1 ),Φm,k,ν2+1, tm).(4.13)
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If the contraction factor satisfies

Λ
(m,k,ν2)
φ <

1

2
,(4.14)

we set ν2 = ν2 + 1. If ν2 > νmax, both the Newton iteration and the predictor
corrector continuation strategy are terminated indicating non-convergence. Oth-
erwise, we continue the Newton iteration (4.11). If (4.14) is not satisfied, we set
k = k + 1 and the time step is reduced according to

τm,k = max(

√
2− 1√

4Λ
(m,ν2)
φ + 1− 1

τm,k−1, τmin).(4.15)

If τm,k > τmin, we go back to the prediction step (4.3) for (4.2a). Otherwise, the
predictor corrector strategy is stopped indicating non-convergence. The Newton
iteration is terminated successfully, if for some ν∗2 > 0 the relative error of two
subsequent Newton iterates satisfies

‖Φ(m,k,ν∗2 ) −Φ(m,k,ν∗2−1)‖
‖Θ(m,k,ν∗2 )‖

< ε.(4.16)

In this case, we set

Θm = Θ(m,k,ν∗1 ), Φm = Φ(m,k,ν∗2 )(4.17)

and predict a new time step according to

τm = min
( (

√
2− 1) ‖∆Θ(m,k,0)‖

2Λ
(m,k,0)
Θ ‖Θ(m,k,0) −Θm‖

,
(
√

2− 1) ‖∆Φ(m,k,0)‖
2Λ

(m,k,0)
φ ‖Φ(m,k,0) −Φm‖

, α
)
τm,k,

(4.18)

where α > 1 is a pre-specified amplification factor for the time step sizes. We
set m = m + 1 and begin new predictor corrector iterations for the time interval
[tm, tm+1].

5. Numerical results

We have implemented the splitting scheme (4.1a),(4.1b) along with the predictor
corrector continuation strategy (4.3)-(4.18) for two examples showing the isotropic
and anisotropic growth of four single crystals. In the first example, four crystals
with different orientation angles are initially located around the four corners of the
computational domain Ω (cf. Figure 1 below). In the second example, two pairs of
crystals with pairwise different orientation angles are initially located inside Ω (cf.
Figure 2 below).

The material data, namely the free energy of the low-grain boundaries H (cf. (2.1)),
the mobility M0 (cf. (2.17a)), the mobility related parameter χ (cf. (2.17b)), the
amplitude of the anisotropy of the free energy s0, and the symmetry index ms (cf.
(2.2)) are given in Table 1.
The computational domain has been chosen as the square Ω = [0.0 µm, 0.8 µm]2.
The computational data further include the grid size h (in µm) of the uniform
simplicial grid Ωh with right isosceles, the polynomial degree k of the Lagrangian
finite elements, the parameters εa and εr (cf. (2.2a) and (2.5)), and the data α, ε,
νmax, and τmin for the predictor corrector continuation strategy (4.3)-(4.18). These
data are given in Table 2.
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H M0 χ s0 ms

Example 1 Example 2 Example 1 Example 2
1.0 · 10−3 20.0 0.1 0 0.04 – 4

Table 1. Material data.

h k εa εr α ε νmax τmin
1.29 · 10−2 2 0.1 1.0 · 10−3 1.2 1.0 · 10−3 50 1.0 · 10−6

Table 2. Computational data.

Example 1: We consider the isotropic growth (i.e., s0 = 0) of four single crystals
with different orientation angles. The initial orientation angles Θ0 and the initial
local degree of crystallinity φ0 are given as follows (cf. Figure 1 (top)):

Θ0 =





1.2π (dark red) around the right upper corner,
1.0π (light red) around the right lower corner,
0.8π (light blue) around the left lower corner,
0.6π (dark blue) around the left upper corner,
0.9± 0.05π randomly chosen elsewhere.

φ0 =

{
1.0 (dark red) around the four corners,
0.0 (dark blue) elsewhere.

The four crystals grow along the curvature and start to impinge on each other with
the star-shaped area of local degree of crystallinity φ = 0 shrinking (cf. Figure
1 (middle)). This process continues as can be seen in Figure 1 (bottom) which
displays the orientation field Θ (bottom left) and the local degree of crystallinity
(bottom right) shortly before complete crystallization has settled in.

Example 2: In this example we consider the anisotropic growth (s0 = 0.5) with
fourfold symmetry (m2 = 4) of two pairs of crystals with pairwise different orien-
tations initially located inside the computational domain Ω as shown in Figure 2
(top). In particular, the initial orientation angles Θ0 and the initial local degree of
crystallinity φ0 are given as follows:

Θ0 =





1.25π (dark red) for the pair of crystals on the right,
0.75π (dark blue) for the pair of crystals on the left,
1.0± 0.05π randomly chosen elsewhere.

φ0 =

{
1.0 (dark red) for the two pairs of crystals,
0.0 (dark blue) elsewhere.

We see the crystals grow and impinge attaining a quadratic cross section according
to the fourfold symmetry (cf. Figure 2 (middle)). Again, this process continues
such that almost at the end of the process there are only two orientations with one
narrow grain boundary separating the two orientations (cf. Figure 2 (bottom left)).
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Figure 1. Example 1: Isotropic growth of four crystals (s0 = 0)
at initial time t = 0 sec (top), at time t = 7.4 · 10−2 sec (middle),
and at final time t = 9.3·10−1 sec (bottom). Left: Local orientation
field Θ. Right: Local degree of crystallinity φ.
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Figure 2. Example 2: Crystallization of four crystals with
anisotropy (s0 = 0.5,symmetry index ms = 4) at initial time
t = 0 sec (top), at time t = 2.40 · 10−2 sec (middle), and at fi-
nal time t = 2.04 · 10−1 sec (bottom). Left: Local orientation field
Θ. Right: Local degree of crystallinity φ.
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Figure 3. Example 2: Performance of the predictor corrector con-
tinuation strategy. Adaptive choice of time steps τm.

The adaptive choice of the time steps τm by means of the predictor corrector contin-
uation strategy (4.3)-(4.18) has been shown to be very beneficial for the numerical
solution of the nonlinear systems (4.2a),(4.2b). As expected, the appropriate choice
of τm is most critical for the fully discrete Θ equation (4.2a), since the original Θ
equation (2.14a) represents a very singular diffusion process. As it turned out, both
for Example 1 and Example 2 predicted time steps for the fully discrete Θ equation
have been frequently rejected and subsequently reduced by the adaptive algorithm,
whereas the then predicted time steps for the fully discrete φ equation have been
always accepted. For Example 2, the adaptive choice of the time steps is displayed
in Figure 3.
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