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Abstract The paper studies an iterative solver for algebraic problems arising in
numerical simulation of blood flows. Here we focus on a numerical solver for the
fluid part of otherwise coupled fluid-structure system of equations which models
the hemodynamics in vessels. Application of the finite element method and semi-
implicit time discretization leads to the discrete Oseen problem on every time step
of the simulation. The problem challenges numerical methods by anisotropic ge-
ometry, open boundary conditions, small time steps and transient flow regimes.
We review known theoretical results and study the performance of recently pro-
posed preconditioners based on two-parameter threshold ILU factorization of non-
symmetric saddle point problems. The preconditioner is applied to the linearized
Navier–Stokes equations discretized by the stabilized Petrov–Galerkin finite ele-
ment (FE) method. Careful consideration is given to the dependence of the solver
on the stabilization parameters of the FE method. We model the blood flow in the
digitally reconstructed right coronary artery under realistic physiological regimes.
The paper discusses what is special in such flows for the iterative algebraic solvers,
and shows how the two-parameter ILU preconditioner is able to meet these specifics.
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1 Introduction

Numerical simulations play an increasing role in visualization, understanding and
predictive modelling of many biological flows, including blood flow in arteries and
the heart. The efficiency of a numerical approach depends on the right choice of
mathematical model, its discretization and the algebraic solvers used to compute
the solution to a discrete model. For the blood flow simulations, state-of-the-art
methods are built on a fluid-structure interaction (FSI) model which typically in-
cludes equations describing the motion of Newtonian viscous fluid, equations for
an elastic structure and coupling conditions [3]. In the process of numerical inte-
gration of the FSI system, however, one often decouples the fluid equations from
the elasticity equations on every time step and hence applies segregated algebraic
solvers for each of the decoupled problem, see, e.g., [10]. Furthermore, for the rea-
son of time-sensitivity of simulations or the ambiguity of the information regarding
the properties of the structure, hemodynamic simulations are often performed in a
fixed geometries, i.e. the vessels wall is assumed to be rigid rather than elastic. In
both cases, one is interested in an efficient numerical solve for the Navier–Stokes
equations describing the motion of incompressible Newtonian fluids in a bounded
domain Ω ⊂ R3 and time interval [0,T ]:





∂u
∂ t
−ν∆u+(u ·∇)u+∇p = f in Ω × (0,T ]

div u = 0 in Ω × [0,T ]
u = g on Γ0× [0,T ], −ν(∇u) ·n+ pn = h on ΓN× [0,T ]

u(x,0) = u0(x) in Ω .

(1)

The unknowns are the velocity vector field u = u(x, t) and the pressure field
p = p(x, t). The volume forces f, boundary and initial values g, h and u0 are given.
Parameter ν is the kinematic viscosity; the boundary of the domain is decomposed
as ∂Ω =Γ 0∪Γ N and Γ0 6=∅. An important parameter of the flow is the dimension-
less Reynolds number Re = UL/ν , where U and L are characteristic velocity and
linear dimension.

The Navier–Stokes equations (1) are fundamental equations of fluid mechanics
and are central for modelling of many physical phenomena. In hemodynamic ap-
plications, one may point to several special features of otherwise general fluid flow
problem in (1):

(i) Anisotropic geometry. The domain Ω typically represents a blood vessel,
which is a stretched branching object;
(ii) Open boundaries of mixed type. The computational domain has artificial
(open) boundaries, where the vessel is cut. Depending on the stage of cardiac
cycle, forward and reverse flows may happen through the same part of the open
boundary, leading to the boundary changing type outflow/inflow;
(iii) Different flow regimes. Variable blood flux generated over one heartbeat may
produce flows with varying Reynolds numbers from laminar to transitional;
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(iv) Finite element method prevails. Due to complex geometry and coupling to
elasticity equations, finite element method is the very common choice for dis-
cretization of (1) in hemodynamic applications. A regularization (in the form of
least-square terms or a sub-grid model) is often added to stabilize the FE method
for higher Reynolds numbers;
(v) Small time steps. The physics of the problem dictates small time steps of
order 10−3× cardiac cycle time for the numerical integration of (1).

Semi-implicit time discretization or an implicit one combined with the lineariza-
tion of the Navier–Stokes system (1) by Picard fixed-point iteration result in a se-
quence of the Oseen problems of the form





αu−ν∆u+(w ·∇)u+∇p = f̂ in Ω
div u = ĝ in Ω

u = 0 on Γ0, −ν(∇u) ·n+ pn = 0 on ΓN

(2)

where w is a known velocity field from a previous iteration or time step and α is
proportional to the reciprocal of the time step. Non-homogeneous boundary condi-
tions in the nonlinear problem are accounted in the right-hand side of (2). A finite
element spatial discretization of (2) produces large sparse systems of the form

(
A B̃T

B −C

)(
u
p

)
=

(
f
g

)
, (3)

where u and p represent the discrete velocity and pressure, respectively; A ∈ Rn×n

is the discretization of the diffusion, convection, and time-dependent terms. The
matrix A accounts also for certain stabilization terms. Matrices B and B̃T ∈Rn×m are
(negative) discrete divergence and gradient. These matrices may also be perturbed
due to stabilization. It is typical for the stabilized methods that B 6= B̃, while for a
plain Galerkin method these two matrices are the same. Matrix C ∈ Rm×m results
from possible pressure stabilization terms, and f and g contain forcing and boundary
terms. For the LBB stable finite elements, no pressure stabilization is required and
so C = 0 holds. If the LBB condition is not satisfied, the stabilization matrix C 6= 0
is typically symmetric and positive semidefinite. For B = B̃ of the full rank and
positive definite A = AT the solution to (3) is a saddle point.

Considerable work has been done in developing efficient preconditioners for
Krylov subspace methods applied to system (3) with B̃ = B; see the comprehen-
sive studies in [2, 6, 19] of the preconditioning exploiting the block structure of the
system. Several algebraic solvers were specifically designed or numerically tested
for solving (3) resulting from hemodynamic applications. This includes incomplete
block LU factorizations mimicking pressure correction splitting methods on the
algebraic level [20], block-triangular preconditioners based on approximation of
pressure advection–diffusion operator [18], additive Schwartz preconditioner [5],
relaxed dimensional factorization block preconditioner [1], see also [5] for the nu-
merical comparison of several preconditioners for the hemodynamics simulations.
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The special features of blood flow problems discussed above impact the alge-
braic properties of the discrete system (3), and ideally, an efficient solver accounts
for them. Thus, the inf-sup stability constants of velocity–pressure elements strongly
depend on the anisotropy of domain Ω , see [4]. This may lead to poor performance
of preconditioners based on pressure Schur complement approximations. Reversed
flows through the open boundary is energy increasing and de-stabilizing phenom-
ena, potentially resulting in the lost of ellipticity by the A block of (3). Next, differ-
ent flow regimes require a robust preconditioner with respect to the variation of the
Reynolds numbers. Finite element method leads, in general, to matrices with higher
fill-in comparing to finite volumes or finite differences schemes. We note that hierar-
chical tetrahedral grids are rarely used to reconstruct blood vessels. This reduce the
applicability of geometric multigrid methods. Furthermore, we shall see that addi-
tional terms added to stabilize finite element method for convection dominated flows
often make algebraic problem harder to solve. Finally, small time steps suggest that
reusable preconditioners and those benefiting from the diagonal dominance in the
A-block should be preferred.

In the paper we study the properties of an algebraic solver for (3) based on a
Krylov subspace iterative method and a two-parameter ILU preconditioner. The
preconditioner results from a special incomplete elementwise LU factorization sug-
gested and studied in [12] for symmetric positive definite matrices and further ex-
tended to non-symmetric saddle-point systems in [14,15]. Here we review the avail-
able analysis and discuss how this algebraic solver addresses the challenges posed
by hemodynamics applications. Further we simulate the blood flow in the digitally
reconstructed part of the right coronary artery. Here we experiment with various
grids, Reynolds numbers and finite element method stabilization parameters to as-
sess the numerical properties for the iterative method.

The remainder of the paper is organized as follows. In section 2 we give neces-
sary details of the finite element method. Section 3 reviews known stability of the
exact LU factorizations for (3). These results are formulated in terms of the proper-
ties of the (1,1)-block A, auxiliary Schur complement matrix BA−1BT +C, and the
perturbation matrix B− B̃. In section 4, we formulate the properties of this matrices
in terms of problem coefficients and parameters of the FE method. In section 5, we
briefly discuss the implication of these results on the stability of a two-parameter
variant of the threshold ILU factorization for non-symmetric non-definite problems.
In section 6 we study the numerical performance of the method on the sequence of
linear systems appearing in simulation of a blood flow in a right coronary artery.
Conclusions are collected in the final section 7.

2 Finite element method

We assume Th to be a collection of tetrahedra forming a consistent subdivision of
Ω . We also assume for Th the shape-regularity condition,
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max
τ∈Th

diam(τ)/ρ(τ)≤CT , (4)

where ρ(τ) is the diameter of the subscribed ball in the tetrahedron τ . A constant
CT measures the maximum anisotropy ratio for Th. Further we denote hτ = diam(τ),

hmin =minτ∈Th hτ . Given conforming FE spaces Vh⊂
(

H2
Γ0
(Ω)

)3
and Qh⊂ L2(Ω),

the Galerkin FE discretization of (2) is based on the weak formulation: Find
{uh, ph} ∈ Vh×Qh such that

L (uh, ph;vh,qh) = (f̂,vh)∗+(ĝ,qh) ∀vh ∈ Vh, qh ∈Qh , (5)
L (u, p;v,q) : = α(u,v)+ν(∇u,∇v)+((w ·∇)u,v)− (p,divv)+(q,divu) ,

where (·, ·) denotes the L2(Ω) inner product.
In experiments we use P2-P1 Taylor–Hood FE pair, which satisfies the LBB com-

patibility condition for Vh and Qh [7] and hence ensures well-posedness and full
approximation order for the FE linear problem.

The finite element method (5) needs stabilization or additional subgrid scale
modelling if convection terms dominate over the diffusion. We consider one com-
monly used SUPG stabilization, while more details on the family of SUPG methods
can be found in, e.g., [21]. Using (5) as the starting point, a weighted residual for
the FE solution multiplied by an ‘advection’-depended test function is added:

L (uh, ph;vh,qh)+ ∑
τ∈Th

στ(αuh−ν∆uh +w·∇uh +∇ph− f,w·∇vh)τ

= (f,vh) ∀vh ∈ Vh, qh ∈Qh , (6)

with ( f ,g)τ :=
∫

τ f gdx. The second term in (6) is evaluated element-wise for each
element τ ∈ Th. Parameters στ are element- and problem-dependent. To define the
parameters, we introduce mesh Reynolds numbers Reτ := ‖w‖L∞(τ)hw/ν for all
τ ∈ Th, where hw is the diameter of τ in direction w. Several recipes for the particular
choice of the stabilization parameters can be found in the literature, see, e.g., [21].
We set

στ =





σ̄
hw

2‖w‖L∞(τ)

(
1− 1

Reτ

)
, if Reτ > 1,

0, if Reτ ≤ 1,
with 0≤ σ̄ < 1. (7)

Obviously, σ̄ = 0 means that no stabilization is added. The choice of στ in (7)
implies the following estimate which we need later in section 6:

στ = σ̄
hw

2‖w‖L∞(τ)

(
1− 1

Reτ

)
≤ σ̄

hw

2‖w‖L∞(τ)
Reτ = σ̄

h2
w

2ν
≤ σ̄

h2
τ

2ν
. (8)

If one enumerates velocity unknowns first and pressure unknowns next, then the
resulting discrete system has the 2×2-block form (3) with C = 0. The stabilization
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alters the (1,2)-block of the matrix making the latter not equal to the transpose of
the (2,1)-block B. From the available analysis and results of numerical experiments
we shall see that the perturbation of A caused by (6) affects essentially the algebraic
properties of (3).

3 Some properties of LU factorization for (3)

One can think about ILU factorization as a perturbation of exact LU factorization.
Hence, it is instructive to have a first look at stability properties of the latter for non-
symmetric saddle-point matrices as in (3). The results in this section summarize the
analysis in [14, 15], where the reader can find full proofs and further details. The
2× 2-block matrix from (3) is in general not sign definite and if C = 0, its diago-
nal has zero entries. An LU factorization of such matrices often requires pivoting
for stability reasons. However, exploiting the block structure and the properties of
blocks A and C, one readily verifies that the LU factorization

A =

(
A B̃T

B −C

)
=

(
L11 0
L21 L22

)(
U11 U12

0 −U22

)
(9)

with low (upper) triangle matrices L11, L22 (U11, U22) exists without pivoting, once
det(A) 6= 0 and there exist LU factorizations for the (1,1)-block

A = L11U11

and the Schur complement matrix S̃ := BA−1B̃T +C is factorized as

S̃ = L22U22.

Decomposition (9) then holds with U12 = L−1
11 B̃T and L21 = BU−1

11 .
Assume A is positive definite. Then the LU factorization of A exists without piv-

oting. Its numerical stability (the relative size of entries in factors L11 and U11) may
depend on how large is the skew-symmetric part of A comparing to the symmetric
part. More precisely, the following bound on the size of elements of L11 and U11
holds (see, e.g., (3.2) in [15]):

‖|L11||U11|‖F

‖A‖ ≤ n
(
1+C2

A
)
, (10)

where CA := ‖A−
1
2

S ANA
− 1

2
S ‖, AS = 1

2 (A+AT ), AN = A−AS. Here and further, ‖ · ‖
and ‖·‖F denote the matrix spectral norm and the Frobenius norm, respectively, and
|M| denotes the matrix of absolute values of M-entries.

If C ≥ 0, B̃ = B, and matrix BT has the full column rank, then the positive def-
initeness of A implies that the Schur complement matrix S := BA−1BT +C is also
positive definite. However, this is not the case for a general block B̃ 6= B. The stabi-
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lization terms in the finite element method (6) produce the (1,2)-block B̃T which is a
perturbation of BT . The positive definiteness of S̃ :=BA−1B̃T +C and the stability of
its LU factorization is guaranteed if the perturbation E = B̃−B is not too large [14].
In particular, S̃ is positive definite if the perturbation matrix E is sufficiently small
such that it holds

κ := (1+CA)εEc
− 1

2
S < 1, (11)

where εE := ‖A−
1
2

S ET‖, cS := λmin(SS), SS = 1
2 (S + ST ). Moreover, if S̃ > 0, the

factorization S̃ = L22U22 satisfies the stability bound similar to (10).
The following result about stability of LU factorization of (3) holds.

Theorem 1. Assume matrix A is positive definite, C is positive semidefinite, and the

inequality (11) holds with εE = ‖A−
1
2

S (B̃− B)T‖, CA = ‖A−
1
2

S ANA
− 1

2
S ‖, and cS =

λmin(SS), then the LU factorization (9) exists without pivoting. The entries of the
block factors satisfy (10) and the following bounds

‖|L22||U22|‖F

‖S̃‖
≤ m


1+

(1+ εEc
− 1

2
S )CA

1−κ


 ,

‖U12‖F +‖L21‖F

‖U11‖‖B̃‖F +‖L11‖‖B‖F
≤ m(1+CA)

cA

with cA := λmin(AS), κ from (11).

The above analysis indicates that the LU factorization for (3) exists if the (1,1)
block A is positive definite and the perturbation of the (1,2)-block is sufficiently
small. The stability bounds depend on the constant CA which measures the ratio of
skew-symmetry for A, the ellipticity constant cA, the perturbation measure εE and
the minimal eigenvalue of the symmetric part of the unperturbed Schur complement
matrix S. In section 4 below, we show estimates of all these values for the finite
element Oseen problem.

4 Properties of matrices A and S̃

The dependence of the critical constants cA, CA, εE and cS from Theorem 1 on the
problem and discretization parameters can be given explicitly. The analysis exploits
the SUPG-FE origin of matrix A (matrix C is zero in the inf-sup FE method). Let
{ϕi}1≤i≤n and {ψ j}1≤ j≤m be bases of Vh and Qh, respectively. From the definition
of matrix A and for arbitrary v ∈ Rn and corresponding vh = ∑n

i=1 viϕi, one gets the
following identity:
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〈Av,v〉= α‖vh‖2 +ν‖∇vh‖2 + ∑
τ∈Th

στ‖w·∇vh‖2
τ +

1
2

∫

ΓN

(w ·n)|vh|2 ds

+
1
2 ∑

τ∈Th

((divw)vh,vh)τ + ∑
τ∈Th

στ(αvh−ν∆vh,w·∇vh)τ , (12)

where n is the outward normal on ΓN. For a detailed discussion of the role each term
from (12) plays in determining properties of matrix A, we refer to [14, 15]. Here
we dwell on the last term in (12) due to the SUPG stabilization. The ν-dependent
part of it vanishes for P1 finite element velocities, but not for most of inf-sup stable
pressure–velocity pairs. Both analysis and numerical experiments below show that
this term may significantly affect the properties of the matrix A, leading to unsta-
ble behavior of incomplete LU factorization unless the stabilization parameters are
chosen sufficiently small.

The estimates for ellipticity and stability constants for A and S̃ are summarized in
Theorem 2 below. In order to formulate the theorem, we recall several well-known
estimates. First, recall the Sobolev trace inequality

∫

ΓN

|v|2 ds≤C0‖∇v‖2 ∀ v ∈ H1(Ω), v = 0 on ∂Ω \ΓN. (13)

For any tetrahedron τ ∈ Th and arbitrary vh ∈Vh, the following FE trace and inverse
inequalities hold
∫

∂τ
v2

h ds≤Ctrh−1
τ ‖vh‖2

τ , ‖∇vh‖τ ≤Cinh−1
τ ‖vh‖τ , ‖∆vh‖τ ≤ C̄inh−1

τ ‖∇vh‖τ , (14)

where the constants Ctr, Cin, C̄in depend only on the polynomial degree k and the
shape regularity constant CT from (4). In addition, denote by Cf the constant from
the Friedrichs inequality:

‖vh‖ ≤Cf‖∇vh‖ ∀ vh ∈ Vh, (15)

and let Cw := ‖(w ·n)−‖L∞(ΓN). We introduce the velocity mass and stiffness matri-
ces M and K: Mi j = (ϕi,ϕ j), Ki j = (∇ϕi,∇ϕ j) and the pressure mass matrix Mp:
(Mp)i j = (ψi,ψ j).

Theorem 2. Assume that w∈ L∞(Ω), problem and discretization parameters satisfy




CwCtrh−1
min ≤

α
4

or CwC0 ≤
ν
4
,

‖divw‖L∞(Ω) ≤
1
4

max{α,νC−1
f },

στ ≤
1
2

(
h2

τ
νC̄2

in
+

αh4
τ

ν2C̄2
inC2

in

)
and στ ≤

hτ

4‖w‖L∞(τ)Cin
∀ τ ∈ Th,

(16)

holds with constants defined in (13)–(15). Then the matrix A is positive definite and
the constants cA,CA,cS and εE can be estimated as follows:
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cA ≥
1
4

λmin(αM+νK),

CA ≤ c(1+
‖w‖L∞(Ω)√

να +ν +hminα
),

cS ≥
cλmin(Mp)

(ν +α +‖w‖L∞(Ω)+‖divw‖L∞(Ω))(1+C2
A)

,

εE ≤
(

σ̄
2ν

λmax(Mp)

) 1
2
.

(17)

where c is a generic constant independent of problem and discretization parameters.

The theorem shows that matrices A and S̃ are positive definite if conditions (16)
on the parameters of the finite element method are satisfied. In this case, the ma-
trix in (3) admits LU factorization without pivoting. The first condition in (16) is
trivially satisfied with Cw = 0 if ΓN 6=∅ or the entire ΓN is outflow boundary. How-
ever, we know that this is often not the case for the hemodynamics problems (see
item (ii) in the introduction). On the other hand, small time step results in a large
value of α which ease the fist condition. The second condition is specific for fi-
nite element approximations. The given w approximates velocity field of an incom-
pressible fluid and hence ‖divw‖L∞(Ω) decreases for a refined grid. However, the
w-divergence norm depends on fluid velocity field and may be large for ν small
enough. Fortunately, for small ∆ t the second condition holds due to α ∼ (∆ t)−1.
The third condition in (16) appears due to the stabilization included in the finite
element formulation (6). The same or a similar condition on stabilization param-
eters appears in the literature on the analysis of SUPG stabilized methods for the
linearized Navier–Stokes equations, see, e.g., [21]. The reason is that the positive
definiteness of A is equivalent to the coercivity of the velocity part of the bilinear
form from (6), which is crucial for deriving finite element method error estimates.
Therefore, stabilization parameter design suggested in the literature typically sat-
isfies στ . h2

τ/ν and στ . hτ/‖w‖L∞(τ) asymptotically, i.e. up to a scaling factor
independent of discretization parameters. As follows from (8), the conditions (16)
on the SUPG stabilization parameters (7) are valid if σ̄ ≤min{C̄−2

in , 1
2C−1

in }. More-
over, the value of the σ̄ parameter from the SUPG term is crucial for the bound on
εE which measures the discrepancy between B and B̃. Thanks to (11) and Theorem 1
we see that εE has to be small enough to guarantee the stability of the factorization.
Numerical results will support this observation. This put additional implicit restric-
tions on σ̄ .

The domain anisotropy, see item (i) in the introduction, affects the lower bound
for cS in Theorem 2. The generic constant c in this bound depends on the inf-sup
constant for Vh −Qh pair. Nevertheless, we shall see from experiments that the
incomplete LU preconditioning in practice remains stable and efficient for stretched
domains. Numerical experiments also show that the preconditioner has remarkable
adaptivity properties with respect to different flow regimes, see item (iii) in the
introduction. The bounds in Theorem 2 depend on w and ν , and so on the Reynolds
number. We observed in practice that the preconditioning remains stable over the
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range of Reynolds number and the fill-in adaptively increases or decreases in such
a way that the number of iterations remains nearly the same.

5 A two-parameter threshold ILU factorization

Incomplete LU factorizations of (3) can be written in the form A = LU−E with an
error matrix E. How small is the matrix E can be ruled by the choice of a threshold
parameter τ > 0. The error matrix E is responsible for the quality of preconditioning,
see, for example, [13] for estimates on GMRES method convergence written in
terms of ‖E‖ and subject to a proper pre-scaling of A and the diagonalizability
assumption. In general, the analysis of ILU factorization is based on the following
arguments. For positive definite matrices A one can choose such a small τ that the
product LU of its incomplete triangular factors L and U is also positive definite
and so estimates from [8] can be applied to assess the numerical stability of the
incomplete factorization: for cA = λmin(AS), the sufficient condition is τ < cAn−1.
In practice, however, larger τ are used.

Theorem 2 shows that for certain flow regimes and the choice of stabilization
parameters the ellipticity constants cA and cS for A and S, respectively, approach
zero. This may imply that the ILU factorization of (3) becomes unstable if pos-
sible at all. To ameliorate the performance of the preconditioning, we consider the
two-parameter Tismenetsky–Kaporin variant of the threshold ILU factorization. The
factorization was introduced and first studied in [12, 23, 24] for symmetric positive
definite matrices and recently for non-symmetric matrices in [14, 15].

Given a matrix A ∈ Rn×n, the two-parameter factorization can be written as

A = LU +LRu +R`U−E, (18)

where Ru and R` are strictly upper and lower triangular matrices, while U and L
are upper and lower triangular matrices, respectively. Given two small parameters
0 < τ1 ≤ τ2 the off-diagonal elements of U and L are either zero or have absolute
values greater than τ1, the absolute values of R` and Ru entries are either zero or
belong to (τ2,τ1]; entries of the error matrix are of order O(τ2). We refer to (18)
as the ILU(τ1, τ2) factorization of A. In the particular case of τ1 = τ2, factorization
ILU(τ1,τ2) is equivalent to the well-known ILUT(p,τ) dual parameter incomplete
factorization [22] with p = n (all elements passing the threshold criterion are kept
in the factors). If no small pivots modification is done, the only differences between
the algorithms (for τ1 = τ2 and p = n) are different scaling of pivots and row de-
pendent scaling of threshold values. The two-parameter ILU factorization goes over
a ILUT(n,τ) factorization: the fill-in of L and U is ruled by the first threshold pa-
rameter τ1, while the quality of the resulting preconditioner is mainly defined by τ2,
once τ2

1 . τ2 holds. In other words the choice τ2 = τ2
1 := τ2 may provide the fill-in

of ILU(τ1, τ2) to be similar to that of ILUT(n,τ), while the convergence of pre-
conditioned Krylov subspace method is better and asymptotically (for τ → 0) can
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be comparable to the one with ILUT(n,τ2) preconditioner. For symmetric positive
definite matrices this empirical advantages of ILU(τ1, τ2) are rigorously explained
in [12], where estimates on the eigenvalues and K-condition number of L−1AU−1

were derived with LT =U and RT
` = Ru. The price one pays is that computing L, U

factors for ILU(τ1, τ2) is computationally more costly than for ILUT(n,τ1), since in-
termediate calculations involve the entries of Ru. However, this factorization phase
of ILU(τ1, τ2) is still less expensive than that of ILUT(n,τ2). A pseudo-code of the
row-wise ILU(τ1, τ2) factorization can be found in [15].

Analysis of the decomposition (18) of a general non-symmetric matrix is limited
to simple estimate (2.5) from [9] applied to the matrix (L + R`)(U + Ru) = A+
R`Ru +E. The low bound for the pivots of the (18) factorization is the following

|LiiUii| ≥ min
v∈Rn

〈(A+R`Ru +E)v,v〉
‖v‖2 ≥ cA−‖R`Ru‖−‖E‖, (19)

with the ellipticity constant cA and the norms ‖R`Ru‖ and ‖E‖ proportional to τ2
1

and τ2, respectively. Hence, we may conclude that the numerical stability of com-
puting for L−1x and U−1x is ruled by the second parameter and the square of the
first parameter, while the fill-in in both factors is defined by τ1 rather than τ2

1 . The
Oseen problem setup may be such that the estimates from Theorem 2 predict that
the coercivity constant cA and the ellipticity constant cS are small. This increases the
probability of the breakdown of ILUT(n,τ) factorization of the saddle-point matrix
A , and demonstrates the benefits of ILU(τ1, τ2) factorization.

The final important remark in this section is that in all computations we use the
simple preprocessing of matrix A by the two-side scaling as described in [15].

6 Numerical results

The model hemodynamic problem of interest is a blood flow in a right coronary
artery. To set up the problem, we use the geometry recovered from a real patient
coronary CT angiography. The 3D vessel is branching and is cut to embed in the
box 6.5cm× 6.8cm× 5cm, see Figure 1. The diameter of the inlet cross-section
is about 0.27 cm. We generate two tetrahedral meshes using ANI3D package [17].
The meshes shown in Figure 1 consist of 63k and 120k tetrahedra. The Navier–
Stokes system (1) is integrated in time using a semi-implicit second order method
with ∆ t = 0.005. This and the discretization with Taylor–Hood (P2-P1) finite ele-
ments result in a sequence of discrete Oseen problems (3). The algebraic systems
have nearly 300k and 600k unknowns for the coarse and the fine meshes, respec-
tively. Other model parameters are ν = 0.04cm2/s, ρ = 1g/cm. We integrate the
system over one cardiac cycle, which is 0.735s. The inlet velocity waveform [11]
shown in Figure 2 defines the Poiseuille flow rate through the inflow cross-section.
The figure shows the integral average of the normal velocity component over the
inflow boundary. The vessel walls were treated as rigid and homogeneous Dirichlet
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boundary conditions for the velocity are imposed on the vessel walls. On all outflow
boundaries we set the normal component of the stress tensor equal to zero. For the
suitable choice of stabilization parameters, cf. below, the computed FE solutions are
physically meaningful, see Figure 3.

We study the performance of the ILU(τ) factorization for different values of dis-
cretization, stabilization, and threshold parameters. For numerical test we use the
implementation of ILU(τ1,τ2) available in the open source software [16, 17]. The
values of ILU thresholds τ1 = 0.03, τ2 = 7τ2

1 are taken from [15]. In that paper
this design of threshold parameters was found to be close to optimal for a range of
problems and fluid parameters. In all experiments we use BiCGstab method with
the right preconditioner defined by the ILU(τ1,τ2) factorization.

Table 1 The performance of ILU(τ1 = 0.03,τ2 = 7τ2
1 ) for right coronary artery. The number of

iterations and pivot modifications and the solution stages times accumulated for 147 time steps

Mesh σ̄ fillLU pmod #it Tbuild Tit TCPU
63k 0 min 0.711 0 131 2.64 13.59 16.55

average 0.854 0 142.2 3.82 15.42 19.24
max 1.009 0 164 5.16 17.47 22.11
total – 0 20908 562. 2267. 2829.

63k 1/12 min 0.711 0 125 2.63 13.03 16.10
average 0.838 0 138.0 3.65 14.84 18.49

max 0.980 0 156 4.85 22.62 26.42
total – 0 20292 537. 2182. 2719.

120k 0 min 0.738 0 163 6.32 36.96 43.93
average 0.846 0 178.2 8.46 42.09 50.56

max 0.985 0 220 11.17 61.61 71.34
total – 0 26209 1244. 6188. 7432.

120k 1/12 min 0.738 0 158 6.27 35.88 42.35
average 0.832 .1 179.9 8.11 41.71 49.83

max 0.959 18 357 10.51 87.58 97.94
total – 21 26446 1192. 6132. 7325.

Table 1 shows the total number of the preconditioned BiCGstab iterations #it,
the total number of modifications of nearly zero pivots #pmod, the fill-in ratio and
the CPU times (factorization time Tbuild, iteration time Tit, total solution CPU time
TCPU = Tbuild +Tit) needed to perform 147 time steps. The fill-in ratio is defined by
fillLU = (nz(L)+ nz(U))/nz(A), where nz(A) = ∑i j sign|Ai j|. On every time step,
the Krylov subspace iterations are done until the initial residual is reduced by 10
orders of magnitude. The initial guess in the solver is the extrapolated solution from
the previous time step. We generate sequences of the discrete Oseen problems (2)
with (σ̄ = 1/12) and without (σ̄ = 0) SUPG-stabilization. In both cases, the ‘quasi-
optimal’ choice of parameters τ1, τ2 leads to stable computations over the whole
cardiac cycle. The total number of iterations depends on the mesh and appears to
be very similar for both examples with and without stabilization. The total num-
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Fig. 1 The coarse (63k, left) and fine (120k, right) grids in the right coronary artery. The bottom
figures zoom a part of the domain.

Fig. 2 The averaged velocity waveform on the inflow as a function of time in the right coronary
artery.

ber of iterations is 20% larger for the fine grid, which should be expected for the
preconditioner based on an incomplete factorization.

The time history of the statistics from Table 1 is shown in Figures 4 and 5. It
is interesting to note that the graph of the fill-in ratio for the LU-factors and the
graph of the ILU factorization time repeat surprisingly well the waveform of the
inflow velocity, see the two top plots in Figures 4 and Figures 5. This explains the
rather modest variation of the iteration counts and CPU times per linear solve over
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Fig. 3 The pressure distribution in the right coronary artery at time 0.15 s.

the cardiac cycle, see the two bottom plots in Figures 4 and Figures 5. Note that
the fill-in ratio fillLU ≤ 1 means that the number of non-zero elements in factors is
less then in ILU(0), the commonly used ILU factorization by position. The fact that
fill-in of the L and U blocks decrease or increase depending on the Reynolds num-
ber is the remarkable adaptive property of the two-parameter ILU preconditioner
which makes it very competitive to other state-of-the-art preconditioners. The dif-
ference in otherwise similar performance of linear solvers for the cases σ̄ = 1/12
and σ̄ = 0 is the following: For σ̄ = 1/12, when the maximum flow rate on the
inlet is achieved, the number of iterations and times needed to build preconditioner
increase essentially (approximately twice as much as average). This happens over a
few time steps. In these cases when factorization is performed several small pivots
occur and their modification is performed during the incomplete factorization.

In the second series of experiments, we demonstrate practical importance of re-
strictions (16) on στ . The Theorems 1 and 2 state that the existence of exact stable
LU factorization of A without pivoting is guaranteed for στ small enough. The es-
timate (8) explains why στ from (7) with σ̄ ≤ min{C̄−2

in , 1
2C−1

in } satisfies (16). The
previous series of experiments show that for the stabilization parameter σ̄ = 1/12
the factorization is done on both meshes without pivot modifications even for the
relatively large value of the threshold, τ1 = 0.03. Now we increase the value of the
stabilization parameter and take σ̄ = 1/6. Table 2 reports on the performance of
ILU(τ1,τ2 = 7τ2

1 ) preconditioner for the sequence of the SUPG-stabilized Oseen
systems generated on the coarse grid with σ̄ = 1/6. The choice of the threshold
as small as τ1 = 10−4 produces the factorization close to the exact one. Hence, the
average number of BiCGstab iterations is only 8. Although no pivot modifications
occurred, the fill-in ratio is unacceptably large and on some time steps the number
of iterations may be large either. We can not afford smaller τ1 because of mem-
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Fig. 4 Right coronary artery, computations on grid 63k (left) and grid 120k (right) without SUPG-
stabilization and τ1 = 0.03: The plots (from top to bottom) show the density of the preconditioner
(fill-in ratio), the time of ILU factorization, the number of BiCGStab iterations, the total CPU time
of the linear system solution at each time step.

ory restrictions. The observation that two-parameter ILU needs no pivoting with
τ1 = 10−4 suggests that the exact factorization is stable. For larger values of the
threshold parameter, τ1 = 3 ·10−4, the fill-in ratio naturally decreases and the aver-
age number of BiCGstab iterations increases. Now, on two time steps the algorithm
has to make 12 and 4 modifications of nearly zero pivots in order to avoid the break-
down. The pivot modifications causes the convergence slowdown, the number of
iterations in the Krylov subspace solver grows up to 135 iterations. Furthermore,
on the finer grid certain Oseen systems with σ̄ = 1/6 can not be solved by the
ILU-preconditioned BiCGstab iterations with any values of the threshold parameter
which we tried.

We repeat same simulations on the coarse grid, but for a smaller value of the
viscosity coefficient, ν = 0.025cm2/s. For this viscosity, the simulation without
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Fig. 5 Right coronary artery, computations on grid 63k (left) and grid 120k (right), SUPG-
stabilization with σ̄ = 1/12 and τ1 = 0.03: The plots (from top to bottom) show the density of
the preconditioner (fill-in ratio), the time of ILU factorization, the number of BiCGStab iterations,
the total CPU time of the linear system solution at each time step.

Table 2 The performance of ILU(τ1,τ2 = 7τ2
1 ) for right coronary artery, σ̄ = 1/6, coarse mesh

63k.

τ1 fillLU pmod #it
0.0003 min 5.978 0 7

average 8.466 .1 12.2
max 11.206 12 135
total – 16 1806

0.0001 min 8.716 0 5
average 12.557 0 8.1

max 16.742 0 100
total – 0 1198



An Algebraic Solver for the Oseen Problem with Application to Hemodynamics 17

SUPG stabilization fail (solution blows up at t = 0.23 s). Stabilization is necessary
and adding it allows to obtain physiologically meaningful solution. At the same
time, for larger parameter σ̄ the linear systems are harder to solve. Indeed, σ̄ =
1/6 requires smaller threshold parameter τ1, whereas σ̄ = 1/3 generates unsolvable
systems, see Table 3. This experiment confirms that restrictions on σ̄ come both
from stability of the FE method and algebraic stability of the LU factorization. Both
restrictions have to be taken into account when one decides about the choice of
SUPG parameters.

Table 3 The performance of ILU(τ1,τ2 = 7τ2
1 ) for right coronary artery with different viscosities

ν . The table shows values of τ1 which allow to run the simulation for the complete cardiac cycle for
different parameters σ̄ . ‘?’ means solution blow-up, ‘–’ means intractable systems for any possible
τ1.

ν , \ σ̄ 0 1/96 1/48 1/24 1/12 1/6 1/3
cm2/s
0.040 0.03 0.03 0.03 0.03 0.03 0.03 0.003
0.025 ? 0.03 0.03 0.03 0.03 0.003 –

We also experiment with reusing ILU preconditioner over several time steps.
This looks like a reasonable thing to try, since the time step is small and the system
may not change too much from one time step to another one. Numerical results,
however, show that the time cost of the setup phase of the preconditioner is small
compared to the time needed by the Krylov subspace method to converge. Hence
this strategy gives some save of time, but a moderate one. To illustrate this, we show
in Table 4 the averaged data for the number of iterations per time step, the setup
time needed to compute L and U factors, the time required by the Krylov subspace
solver, and the total time, which is the sum of those two. The data is shown for the
flow in the artery with the 63K grid, ν = 0.04, σ̄ = 1/12, τ1 = 0.03, τ2 = 7τ2

1 . We
see that reusing the same preconditioner over two time steps saves about 10% of the
total computational time.

Table 4 The performance of plain ILU(τ1,τ2) preconditioning versus reusing the same precondi-
tioner over 2 time steps

#it Tbuild Tit TCPU
building preconditioner each time step 138 4.2 14.8 18.9
building preconditioner every second time step 139 2.1 15.1 17.2
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7 Conclusions

In this paper we studied the preconditioner based on elementwise incomplete two-
parameter threshold ILU factorization of non-symmetric saddle-point matrices. The
Krylov subspace solver with the preconditioner was used to simulate a blood flow in
a right coronary artery reconstructed from a real patient coronary CT angiography.
We tested the method for a range of physiological and discretization parameters.
Several conclusions can be made: The solver efficiently handles typical features of
hemodynamic applications such as geometrically stretched domains, variable flow
regimes, and open boundary conditions with possible reversed flows. The precondi-
tioner benefits from smaller time increments. One can reuse the preconditioner over
several time steps, although for this particular application the benefit of doing this
is modest, since the setup phase of the preconditioning is cheap compared to the
time cost of iterations. A sequential version of the preconditioner is straightforward
to implement for any type of finite elements and other discretizations once the ma-
trix entries are available. For parallel computations it is natural to combine the ILU
preconditioner with the additive Schwarz method. This is a subject of our further
research.
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