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NUMERICAL SIMULATION OF SURFACE ACOUSTIC WAVE
ACTUATED SEPARATION OF RIGID ENANTIOMERS BY THE
FICTITIOUS DOMAIN LAGRANGE MULTIPLIER METHOD

STEFAN BURGER∗, THOMAS FRANKE† , THOMAS FRAUNHOLZ‡, RONALD H.W.

HOPPE§ , MALTE A. PETER¶, AND ACHIM WIXFORTH‖

Abstract. Enantiomers are chiral objects which differ by their orientation and are thus referred
to as left-handed and right-handed enantiomers. In applications they mostly occur as so-called
racemic compounds consisting of approximately the same amount of left- and right-handed species
which may have completely different properties. Hence, the separation of left- from right-handed
enantiomers is an important issue. Conventional technologies are based on gas or high pressure
liquid chromatography, capillary electrophoresis, or nuclear magnetic resonance, but typically they
are slow and require costly chiral media. A new idea for separation of chiral objects is based on
introducing them in certain vorticity patterns, which has been shown to work in theory for an
extremely simplified setting by Kostur et al. (2006, Phys. Rev. Lett. 96, 014502-1-014502-4). In
this paper, we investigate whether these ideas can be successfully adapted to a more realistic setup
which can be implemented experimentally. For this purpose, we simulate transport of rigid chiral
particles in a fluidic environment by an application of the fictitious domain Lagrange multiplier
method due to Glowinski et al. (2001, J. Comput. Phys. 169, 363-427) which has been designed to
study the motion of rigid particles in carrier fluids. Numerical results are presented which illustrate
the feasibility of enantiomer separation in flow fields consisting of pairwise counter-rotating vortices.
Moreover, a first experimental setup based on surface acoustic wave generated vorticity patterns
on the surface of a carrier fluid is devised which reflects the idealized numerical model and gives
promising results with respect to properties of particle propagation. These findings may lead to a
new technology for enantiomer separation which is both fast and cost-effective.

Key words. enantiomer separation, surface acoustic waves, fictitious domain Lagrange multi-
plier method

AMS subject classifications. 65M60, 74L15, 76Z05, 92C10, 92C50

1. Introduction. Enantiomers are chiral geometric objects where an object is
said to be chiral, if it is not identical to its mirror image. Since the word chiral stems
from the Greek ’χειρ’ which means ’hand’, one distinguishes enantiomers by their
handedness (right- resp. left-handedness). In chemistry, chirality refers to a molecule
which is not superposable on its mirror image. Compounds consisting of molecules
of the same handedness are called enantiopure or unichiral, whereas compounds con-
sisting of the same amount of right- and left-handed enantiomers are referred to as
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racemic. The discovery of anorganic molecular chirality goes back to the physicists
Biot and Gay-Lussac as well as the chemist and microbiologist Pasteur, whereas or-
ganic molecular chirality has been discovered by van’t Hoff and LeBel. First models
for chiral molecules based on electronic theories have been developed by Born, Con-
don, and Hund, whereas more recent models rely on parity violation in electro-weak
quantum chemistry (cf. [20] and the references therein). Since the chemical synthesis
of enantiomers usually gives rise to racemic compounds, enantiomer separation plays
a significant role in agrochemical, electronic, and pharmaceutical as well as food,
flavor and fragrance industries (cf., e.g., [3, 7, 8, 9, 15]). Traditional separation tech-
nologies are based on gas or high pressure liquid chromatography [5, 25], capillary
electrophoresis [21], or nuclear magnetic resonance [26], but most of them are slow
and require costly chiral media.

A different approach uses the fact that enantiomers drift in microflows with a
direction depending on their chirality [5, 16, 18]. In particular, enantiomer separation
using a quadrupolar force field was previously predicted in [14] from a theoretical
point of view for simple idealized chiral objects.

This paper is devoted to applying these ideas to a setup which can be developed
experimentally and to testing this setup both numerically and experimentally. The
idea is to use a quadrupolar force field to create a two-dimensional fluid flow (at the
surface of a bulk fluid) in which floating shallow enantiomers are separated using
pairwise counter-rotating vortices. The general separation mechanism is sketched in
Figure 1.1(left) while the used flow field (without enantiomers) is shown in Figure
1.1(right).

Fig. 1.1. Sketch of the anticipated separation process of L-shaped enantiomers by pairwise
conter-rotating vortices (left) and employed vorticity pattern (right).

The numerical simulation of this separation process at the (two-dimensional) fluid sur-
face is performed by an adaption of the fictitious domain Lagrange multiplier method
(FDLM) which has been developed by Glowinski et al. [11] and successfully applied to
the sedimentation of rigid bodies in fluid containers [19] and the numerical simulation
of the rheology of red blood cells in microvessels [24]. Using this method we perform
fluid–structure interaction simulations using L-shaped objects, rigid enantiomers, in
a fluid environment. In particular, we identify the separation mechanism.

In the experiment, the counter-rotating vortices are actuated by surface acous-
tic waves (SAWs). More precisely, the setup consists of a fluid-filled container put
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on top of a plate partially coated with a piezoelectric material and an Inter-Digital
Transducer (IDT) appropriately placed in the middle of the bottom of the container.
Applying a high-frequency signal to the IDT, due to the piezoelectric effect surface
acoustic waves (SAWs) are generated that enter the container and create a vorticity
pattern consisting of pairwise counter-rotating vortices. As test enantiomers, we use
photoresist made, L-shaped, rigid particles floating on the surface of the fluid. The
experimental results validate the numerical model in terms of transport characteris-
tics.

The paper is organized as follows: In section 2, we present the adaption of the
FDLM to the separation of the enantiomers on the surface of the fluid, whereas section
3 is devoted to the numerical realization of the FDLM. Section 4 contains a descrip-
tion of the experimental setup and a comparison of the numerical simulations with
experimental data. In section 5, we provide a documentation of numerical simulations
for the enantiomer separation revealing the separation mechanism. Conclusions are
given in section 6.

2. The Numerical Model based on the Fictitious Domain Lagrange
Multiplier Method (FDLM). Based on the work of [14], we want to investigate
whether separation of rigid chiral particles can be achieved by introducing them into
a two-dimensional flow field which is driven by a quadrupolar force field. In view of
the experimental setup devised in section 4, we think of this two-dimensional domain
as the surface of a fluid volume, at which the particles float.

For the numerical simulation of the enantiomer separation on the surface Γs of
the fluid, the advantage of the fictitious domain Lagrange multiplier approach is that
the computations can be performed on a fixed mesh of the spatial domain Γs by
imposing distributed Lagrange multipliers to the fluid on the domains occupied by
the enantiomers.

We assume that N moving rigid, L-shaped enantiomers have been injected onto
the surface Γs of the fluid occupying subdomains Bj(t) ⊂ Γs, 1 ≤ j ≤ N, with
Bj(t) ∩ Bk(t) = ∅, 1 ≤ j 6= k ≤ N, t ∈ (0, T ). We refer to ρj ,Mj ,Cj,Θj ,vj , and
ωj , j ∈ {1, · · · , N}, as the density, mass, center of mass, angle, velocity of the center
of mass, and the angular velocity of the j-th enantiomer. Moreover, Ij ,F

H
j ,Fr

j ,T
H
j

stand for the inertia tensor, the resultant of the hydrodynamic forces, the artificial
repulsive forces, and the torque at Cj of the hydrodynamic forces acting on the j-th
enantiomer. In particular, the repulsive forces Fr

j , 1 ≤ j ≤ N, are given by

Fr
j =

∑

k 6=j

FP
jk + F∂Γs

j , (2.1)

where FP
jk is the repulsive force between the j-th enantiomer and the other enantiomers

and F∂Γs

j is the repulsive force between the j-th enantiomer and the wall of the fluid
container according to

F∂Γs

j :=
∑

pi∈Pj

∑

pl∈P∂Γs

Fr(pi,pl) , (2.2a)

FP
jk :=

∑

pi∈Pj

∑

pl∈Pk

Fr(pi,pl) , (2.2b)

Fr(pi,pl) :=

{
0 , dil > r,

ε−1(pi − pl)/dil

(
r − dil

)2

, dil < r
. (2.2c)
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Here, r > 0 is some distance, called the repulsion length, usually chosen discretization
dependent as one half of the mesh width of the finite element mesh for the discretiza-
tion of the Navier–Stokes equations. MoreoverPj and P∂Γs denote the sets of vertices
belonging to the j-th particle and ∂Γs, respectively. In addition to this ε is used as a
scaling factor and dil := dist(pi,pl) denotes the distance between two points. Setting

Γs(t) := Γs \
⋃N

j=1 Bj(t), the velocity v and pressure p of the fluid is modeled by the
incompressible Navier–Stokes equations

ρf
∂v

∂t
+ ρf (v · ∇)v − η∇2v −∇p = f , x ∈ Γs(t) , t ∈ (0, T ) , (2.3a)

∇ · v = 0 , x ∈ Γs(t) , t ∈ (0, T ) , (2.3b)

with fluid density ρf , dynamic viscosity η, boundary conditions

v(x, t) =

{
v̂ , x ∈ ∂Γs, t ∈ (0, T )

vj(t) + ωj(t)×
−−−−→
Cj(t)x , x ∈ ∂Bj(t), t ∈ (0, T )

, (2.3c)

and initial condition

v(x, 0) = v̂ , x ∈ Γs(0). (2.3d)

Note that
−−−−→
Cj(t)x in (2.3c) refers to the vector joining Cj(t) and x, and f in (2.3a)

stands for an external force density.

The motion of the N enantiomers is described by the Newton–Euler equations

Mj
dvj

dt
= FH

j + Fr
j ,

dCj

dt
= vj(t),

dΘj

dt
=

dωj

dt
1 ≤ j ≤ N , (2.4a)

Ij
dωj

dt
= TH

j +
−−→
Cjx× Fr

j , 1 ≤ j ≤ N , (2.4b)

with initial conditions

vj(0) = v0
j , ωj(0) = ω0

j , Cj(0) = C0
j , 1 ≤ j ≤ N. (2.4c)

Rigid body motions are imposed to the fluid in Bj(t), 1 ≤ j ≤ N , which is taken care
of by distributed Lagrange multipliers λj(t) ∈ Λj(t) := H1(Bj(t)), 1 ≤ j ≤ N , where
here and in the sequel we use standard notation from Lebesgue and Sobolev space
theory [22].

The numerical model based on the FDLM method therefore amounts to the
computation of v(t) ∈ V := {H1(Γs) | v|∂Γs = v̂}, p(t) ∈ L2

0(Γs), vj(t),Cj(t) ∈
lR2,ωj(t) ∈ lR, λj(t) ∈ Λj(t), 1 ≤ j ≤ N , such that for all w ∈ H1

0(Γs), q ∈
4



L2
0(Γs),Y ∈ lR2, τ ∈ lR,µj ∈ Λj(t), 1 ≤ j ≤ N , there holds

ρf

∫

Γs

(
∂v

∂t
+ (v · ∇)v) ·wdx −

∫

Γs

p∇ ·wdx + η

∫

Γs

∇v : ∇wdx + (2.5a)

+

N∑

j=1

(1− ρf
ρj

)
(
Mj

dvj

dt
·Y + Ij

dωj

dt
· τ

)
=

=

N∑

j=1

∫

Bj(t)

(
λj · (w −Y − τ ×−−→

Cjx)
)

+ ρf

∫

Γs

f ·wdx +

N∑

j=1

(
(FH

j + Fr
j) ·Y + (TH

j + Fr
j ×

−−→
Cjx) · τ

)
,

∫

Γs

q ∇ · v dx = 0 , (2.5b)

∫

Bj(t)

(
µj · (v − vj − ωj ×

−−→
Cjx)

)
dx = 0, 1 ≤ j ≤ N , (2.5c)

with initial conditions

v(x, 0) =

{
v̂ , x ∈ Γs(0) \Bj(0)

v0
j + ω0

j ×
−−→
C0

jx , x ∈ Bj(0)
, (2.5d)

vj(0) = v0
j , Cj(0) = C0

j , ωj(0) = ω0
j , Bj(0) = B0

j , 1 ≤ j ≤ N. (2.5e)

3. Discretization and Numerical Solution. In this section, we describe the
discretization of (2.3) and (2.5) in space and time. For the spatial discretization of the
incompressible Navier–Stokes equations (2.3) we use Taylor–Hood P2/P1 elements [4]
with respect to a quasiuniform simplicial triangulation Th(Γs) of the computational
domain Γs. For K ∈ Th(Γs), we denote by |K| the area of K, by hK the diameter
of K, and we set h := max{hK | K ∈ Th(Γs)}. Further, Pk(K), k ∈ N, refers to the
set of polynomials of degree ≤ k on K. The finite element trial spaces Vh for the
velocity and Qh for the pressure read

Vh :={vh ∈ C(Γ̄s) | vh|K ∈ P2(K)2,K ∈ Th(Γs),vh|∂Γs = v̂h},

Qh :={wh ∈ C(Γ̄s) | wh|K ∈ P1(K),K ∈ Th(Γs),

∫

Γs

wh dx = 0},

where v̂h is the L2-projection of v̂ onto the space of piecewise polynomials of degree
2 on ∂Γs. We further refer to

Vh,0 :={vh ∈ C(Γ̄s) | vh|K ∈ P2(K)2,K ∈ Th(Γs),vh|∂Γs = 0}
as the associated finite element test space for the velocity.
We avoid an additional triangulation Th(Bj(t)), 1 ≤ j ≤ N, of the domains occupied
by the enantiomers. Instead, we use the domains Bh,j(t) ⊂ Th consisting of all K ∈ Th
with K ⊂ Bj(t). The finite element spaces Λh,j(t) for the distributed Lagrange
multipliers are chosen according to

Λh,j(t) :={λh ∈ C(Bj(t)) | λh|K ∈ P2(K)2}, 1 ≤ j ≤ N.

5



The algorithm requires the computation of vh(t) ∈ Vh, ph(t) ∈ Qh, vj(t),Cj(t) ∈
lR2,ωj(t) ∈ lR, λh,j(t) ∈ Λh,j(t), 1 ≤ j ≤ N , such that for all wh ∈ Vh,0, qh ∈
Qh,Y ∈ lR2, τ ∈ lR,µh,j ∈ Λh,j(t), 1 ≤ j ≤ N , it holds

ρf

∫

Γs

(
∂vh

∂t
+ (vh · ∇)vh) ·whdx −

∫

Γs

ph∇ ·whdx + η

∫

Γs

∇vh : ∇whdx +

(3.1a)

+

N∑

j=1

(1 − ρf
ρj

)
(
Mj

dvj

dt
·Y + Ij

dωj

dt
· τ

)
=

=

N∑

j=1

∫

Bh,j(t)

(
λh,j · (wh −Y − τ ×−−→

Cjx)
)
dx

+ ρf

∫

Γs

f ·whdx +
N∑

j=1

(
(FH

j + Fr
j) ·Y + (TH

j + Fr
j ×

−−→
Cjx) · τ

)
,

∫

Γs

qh ∇ · vh dx = 0 , (3.1b)

∫

Bh,j(t)

(
µh,j · (vh − vj − ωj ×

−−→
Cjx)

)
dx = 0, 1 ≤ j ≤ N, (3.1c)

with initial conditions

vh(x, 0) =

{
v̂h , x ∈ Γs(0) \Bj(0)

v0
j + ω0

j ×
−−→
C0

jx , x ∈ Bj(0)
, (3.1d)

vj(0) = v0
j , Cj(0) = C0

j , ωj(0) = ω0
j , Bj(0) = B0

j , 1 ≤ j ≤ N, (3.1e)

where v̂h is the L2-projection of v̂ onto Vh.
For the discretization in time we use the Yanenko–Marchuk fractional step method

[17] which gives rise to the solution of elliptic subproblems that are taken care of by
the conjugate gradient method. We assume a partition {0 := t0 < t1 < · · · tN := T }
of the time interval [0, T ] into subintervals [tn−1, tn] of length ∆tn := tn − tn−1 and
denote by xn an approximation of the variable x at time tn. In order to propagate
from time tn−1 to tn we proceed in three major steps similar to [11]. First, we solve
the fluid motion part of (3.1a) by using the splitting method proposed by Chorin and
Temam [6, 23]. This means we compute a tentative velocity ṽh ∈ Vh such that for
all wh ∈ Vh,0 there holds

ρf

∫

Γs

((ṽh − vn−1
h )/∆tn) ·whdx + ρf

∫

Γs

(∇vn−1
h · vn−1

h ,wh)dx (3.2)

+ η

∫

Γs

∇vn−1
h · ∇whdx = ρf

∫

Γs

f ·whdx. (3.3)

For proper iterative solutions v
n−1/2
h ∈ Vh and pnh ∈ Qh we have to project the

tentative velocity ṽh onto the space of divergence free vector fields. Therefore, we
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solve the following equations

∆tn

∫

Γs

∇pnh · ∇qhdx = −
∫

Γs

(∇ · ṽ qh), (3.4)

∫

Γs

v
n−1/2
h whdx =

∫

Γs

ṽh ·whdx − ∆tn

∫

Γs

∇pnh ·whdx, (3.5)

which have to be satisfied for all wh ∈ Vh,0 and qh ∈ Qh. In the next step, we take
care of the fluid-particle interaction which can be written as a subproblem of (3.1)
such that for all wh ∈ Vh,0,Y ∈ lR2, τ ∈ lR,µh,j ∈ Λh,j(t), 1 ≤ j ≤ N , it holds

ρf

∫

Γs

∂vh

∂t
dx +

N∑

j=1

(1− ρf
ρj

)
(
Mj

dvj

dt
·Y + Ij

dωj

dt
· τ

)
=

=

N∑

j=1

∫

Bh,j(t)

(
λh,j · (wh −Y − τ ×−−→

Cjx)
)
dx (3.6)

∫

Bh,j(t)

(
µh,j · (vh − vj − ωj ×

−−→
Cjx)

)
dx = 0, 1 ≤ j ≤ N,

Following [11] we use the conjugate gradient algorithm for solving this problem. The
initialization step s = 0 is:

ρf

∫

Γs

vinit
h − v

n−1/2
h

∆t
·whdx =

N∑

j=1

∫

Bn−1
h,j

λn−1
h,j ·whdx, (3.7a)

(1− ρf
ρj

)Mj

vinit
j − vn−1

j

∆t
·Y = −

∫

Bn−1
h,j

λn−1
h,j ·Y dx, 1 ≤ j ≤ N, (3.7b)

(1− ρf
ρj

)Ij
ωinit

j − ωn−1
j

∆t
· τ = −

∫

Bn−1
h,j

λn−1
h,j · τ ×−−→

Cjx dx, 1 ≤ j ≤ N. (3.7c)

Then, for 1 ≤ j ≤ N we compute

∫

Bn−1
h,j

µh,j · ginit
h,j dx =

∫

Bn−1
h,j

(
µh,j · (vinit

h − vinit
j − ωinit

j ×−−→
Cjx)

)
dx = 0, (3.7d)

and set zinith,j = ginit
h,j . For the following steps s > 0 we assume λs−1

h,j , vs−1
h , vs−1

j , ωs−1
j ,

zs−1
h,j and gs−1

h,j to be known. In order to obtain λs
h,j , v

s
h, v

s
j , ω

s
j , z

s
h,j and gs

h,j by a
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descent step, we need to solve

ρf

∫

Γs

vdesc
h

∆t
·whdx =

N∑

j=1

∫

Bn−1
h,j

zs−1
h,j ·whdx, (3.8a)

(1 − ρf
ρj

)Mj

vdesc
j

∆t
·Y = −

∫

Bn−1
h,j

zs−1
h,j ·Y dx, 1 ≤ j ≤ N, (3.8b)

(1 − ρf
ρj

)Ij
ωdesc

j

∆t
· τ = −

∫

Bn−1
h,j

zs−1
h,j · τ ×−−→

Cjx dx, 1 ≤ j ≤ N, (3.8c)

and then
∫

Bn−1
h,j

µh,j · gdesc
h,j dx =

∫

Bn−1
h,j

(
µh,j · (vdesc

h − vdesc
j − ωdesc

j ×−−→
Cjx)

)
dx = 0, 1 ≤ j ≤ N,

(3.8d)

Finally, we update our variables by computing

ρs−1
j =

∫
Bn−1

h,j

gs−1
h,j · gs−1

h,j dx

∫
Bn−1

h,j

(
zs−1
h,j · (vdesc

h − vdesc
j − ωdesc

j ×−−→
Cjx)

)
dx

, 1 ≤ j ≤ N, (3.8e)

and setting

λs
h,j = λs−1

h,j − ρs−1
j zs−1

h,j ,

vs
h = vs−1

h − ρs−1
j vdesc

h ,

vs
j = vs−1

j − ρs−1
j vdesc

j ,

ωs
j = ωs−1

j − ρs−1
j ωdesc

j ,

gs
h,j = gs−1

j − ρs−1
j gdesc

j .

The last step of the conjugate gradient algorithm is to test convergence and to con-
struct a new descent direction. To this end, if

∫
Bn−1

h,j

gs
h,j,g

s
h,jdx

∫

Bn−1
h,j

ginit
h,j ,g

init
h,j dx

≤ ǫtol , 1 ≤ j ≤ N, (3.8f)

we choose vn
h = vs

h and λn
h,j = λs

h,j , v
n−1/2
j = vs

j , ω
n−1/2
j = ωs

j for 1 ≤ j ≤ N .
Otherwise, we compute

γs−1
j =

∫

Bn−1
h,j

gs
h,j,g

s
h,jdx

∫

Bn−1
h,j

gs−1
h,j ,gs−1

h,j dx
, 1 ≤ j ≤ N, (3.8g)
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and set

zsh,j = gs−1
j − γs−1

j zs−1
j .

Finally, we set s s+ 1 and go back to the initialization step.
The last step of the splitting method is to update the particle. This is done by

Cn
j = Cn−1

j +∆t vn
j , (3.9a)

Θn
j = Θn−1

j +∆t ωn
j , (3.9b)

vn
j = v

n−1/2
j +∆t M−1

j (FH
j + Fr

j), (3.9c)

ωn
j = ω

n−1/2
j +∆t I−1

j

(
TH

j + (
−−→
Cn

j x× Fr
j)
)
. (3.9d)

4. Experimental Setup and Model Validation. The experimental set-up
consists of a fluid-filled container with an immersed SAW microchip at the ground.
The SAW microchip is coated with a piezoelectric material such as lithium niobate
(LiNbO3) and features an Inter-Digital Transducer (IDT) placed at the center of the
bottom of the container with its aperture pointing upwards (cf. Figure 4.1). Applying
a high-frequency signal to the IDT, acoustic waves are generated that enter the fluid
in the container and create a steady-state flow pattern at the fluid surface consisting of
four counter-rotating vortices (cf. Figure 4.2). We note that the modeling, simulation,
and optimization of piezoelectrically agitated acoustic streaming has been considered
in [1, 2, 10], and [13].

Fig. 4.1. Side-view of the experimental setting (shown without water). The setup is mounted
on a circuit board consisting of the fluid container and the IDT with substrate layer in the middle
on the bottom of the water bulk.

4.1. Generation of Pairwise Counter-Rotating Vortices. For the IDT, as
piezoelectric material we have used 128o rotated YX lithium niobate (LiNbO3). The
operating frequency f of the IDT has been chosen according to fIDT = 1.42 · 102 MHz
resulting in a maximum velocity vmax = 2.0 · 10−3 m/s on top of the water bulk with
height 6.0 · 10−4 m. The resulting SAW generated vorticity patterns consist of four
pairwise counter-rotating vortices at the surface of the fluid, see Figure 4.2.

4.2. Production of L-shaped Enantiomers. For the production of the pho-
toresist L-shaped enantiomers we have followed the protocol described by [12] with
some modifications. The whole process of manufacturing is shown in Figure 4.3 and
the numbers in parenthesis in the following text also refer to that figure:
First a sacrificial layer of omnicoat is spincoated on a silicon wafer (2). In a second
spin coating process SU8-2 photoresist laden with 0.5mg/ml Nile Red is spun onto the
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Fig. 4.2. Left: Two-dimensional SAW generated surface streaming profile. The optical path
is slightly tilted to gain a larger field of view. Hydrophobic coated beads of 1µm diameter were
used as tracer particles to visualize the fluid flow on the surface. The image is a superposition of
micrographs and shows parts of the four quadrant flows induced by the chip. Right: Micrograph
showing two of the counter-rotating vortices. Diagonally opposing vortices always have the same
direction of rotation.

Fig. 4.3. Schematic representation of fabrication of the photoresist particles. 1) Clean silicon
wafer. 2) A sacrificial layer of omnicoat is applied 3) SU8-2 is applied. 4) Photoresist is partially
exposed. 5) Unexposed SU8-2 is developed. 6) Surface is treated with silane. 7) Lift-off. Afterwards
particles are transferred onto the water surface and float stably in a well defined orientation.

omnicoat layer at 3000 rounds per second achieving a film thickness of about 1.5 µm
(3). After soft baking the photoresist it is exposed using a mask aligner and then baked
a second time (4). After the substrate has cooled to room temperature the unexposed
photoresist is developed using MR-DEV300 leaving the desired particles attached to
the sacrificial layer of omnicoat (5). In order to render the particles hydrophobic on
one side a layer of Trichloro(octadecyl)silane (OTS) is applied by spin coating (6). To
this end 10µl OTS are dissolved in 3ml n-hexane and spun onto the particles at 1000
rpm for 10 seconds. The OTS solution has to be applied after the spin coater has
reached its maximum rate of revolution since n-hexane evaporates very quickly thus
leaving the OTS scattered on the surface inhomogeneously distributed if the spinning
rate is too low. The layer of OTS renders the particles highly hydrophobic on the
top side . After these steps the particles are still firmly attached to the substrate
and can be stored in a dark ambient until use to prevent bleaching of the fluorescent

10



dye. To remove the particles from the wafer a lift-off procedure is performed using
omnicoat developer. The wafer is immersed in the solution until the omnicoat layer
has been sufficiently dissolved which takes approximately 30 seconds depending on the
geometry of the sample. The wafer is then transferred to the experimental setup and
the detached particles can be washed off using pure water. Due to the top side of the
particles being considerably more hydrophobic than the bottom side the orientation
of the particles is conserved during the lift off process in most cases and the particles
float stably on the surface of the fluid.

Category/Name Symbol Unit Value

Domain and Discretization
Length lΓs m 8.4 · 10−3

Grid Size h m 2.1 · 10−5

Time Step Size ∆ t s 1.0 · 10−2

Fluid (Water 25◦C)
Density ρ kg/m3 1.0 · 10+3

Dynamic Viscosity η Pa · s 1.0 · 10−3

Maximum Velocity vmax m/s 2.0 · 10−3

Square Particle
Length lS m 1.0 · 10−4

Density ρS kg/m3 2.0 · 10+3

Center of Mass cS m (8.6, 2.8)T · 10−4

Velocity vS m/s (−1.8,−3.5)T · 10−4

Angle of Rotation ΘS rad 2.0
Angular Velocity ωS rad/s 0.0

L-Shaped Particle
Length lL m 2.3 · 10−4

Density ρL kg/m3 2.0 · 10+3

Center of Mass cL m (4.0, 2.3)T · 10−4

Velocity vL m/s (−1.3,−4.4)T · 10−4

Angle of Rotation ΘL rad 5.3
Angular Velocity ωL rad/s 0.0

Table 4.1
Domain, discretization, fluid and particle related constants and parameters for simulations

validating the quadrupolar force density.

4.3. Model Validation: Comparison with Experimental Measurements.
In this section we perform numerical simulations using the previously described Fic-
titious Domain Lagrange Multiplier Method. Here, we work with a quadrupolar
force density as generating source of the fluid vorticity pattern consisting of pairwise
counter-rotating vortices. Following [14], this source is given by

f := −η∆v̂, v̂ = (v̂1, v̂2)
T , v̂1 = ∂Ψ/∂x1, v̂2 = −∂Ψ/∂x2 (4.1)

in terms of the stream function

Ψ(x1, x2) = vmax
lΓs

√
3

π

sin(πx1/lΓs) sin(πx2/lΓs)

(2− cos(πx1/lΓs)) (2− cos(πx2/lΓs))
, (4.2)
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Fig. 4.4. Left: Experimental SAW generated surface streaming profile with operating frequency
fIDT = 1.42 · 102 MHz of the IDT. Right: Simulated vorticity pattern generated by a quadrupolar
force field with vmax(fIDT) = 2.0 · 10−3 m/s.

Fig. 4.5. Left: Experimentally measured trajectories of a square shaped particle (red line)
and an L-shaped particle (yellow line). Right: Computed trajectories based on the data of the
experimental set up.

where vmax denotes the maximum velocity of the vector field.

A qualitative comparison shows that the SAW generated velocity field is close to
the velocity field produced by the quadrupolar force field, see Figure 4.4. For model
validation and verification of the numerical simulations, we have compared the trajec-
tories of an L-shaped and a square shaped particle in the upper right quadrant of the
surface of the fluid (counter-clockwise rotating vortex) obtained in an experiment and
by numerical simulation. The corresponding numerical parameters are shown in Table
4.1. Figure 4.5 (left) displays the trajectories of the square shaped particle (red line)
and the L-shaped particle (yellow line) in the experiment, whereas Figure 4.5 (right)
shows the corresponding trajectories computed by the application of the FDLM using
the data of the experimental set up. For a more quantitative comparison, we refer to
Figure 4.6 which shows almost perfect agreement between experimental measurement
and numerical simulation of the angle of rotation of the square shaped particle as a
function of time.

5. Numerical Simulation of Enantiomer Separation. Using the quadrupo-
lar force density (4.1) we were able to reveal two qualitatively distinct cases of enan-
tiomer separation in simulation. First, in Figure 5.1 we see the motion of a right-
handed and a left-handed L-shaped enantiomer initially placed slightly left of the
middle between two counter-rotating vortices in the lower quadrants of the surface
of the fluid. As can be seen in Figure 5.1 (left), the right-handed enantiomer gets
attracted by the counter-clockwise rotating vortex in the lower left quadrant. On
the other hand, as shown in Figure 5.1 (right), the left-handed enantiomer follows a
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Fig. 4.6. Angle of rotation of the particles as a function of time from Figure 4.5 (experiment:
red dots, simulation: green line).

trajectory that leads to a path around the center of the clockwise rotating vortex in
the upper left quadrant.

Fig. 5.1. Enantiomer separation of a right-handed (left) and left-handed (right) L-shaped enan-
tiomer at the outgoing velocity streamlines. The right-handed L-shaped particle follows the vortex
rotating counter-clockwise in the lower left quadrant whereas the left-handed L-shaped particle follows
the vortex rotating clockwise in the upper left quadrant.

Likewise, Figure 5.2 shows that a right-handed (left-handed) enantiomer initially
placed in the middle between the two counter-rotating vortices gets attracted by the
counter-clockwise (clockwise) rotating vortex in the upper right (upper left) quad-
rant. In summary, right-handed (left-handed) enantiomers are attracted by counter-
clockwise (clockwise) rotating vortices such that a perfect separation occurs provided
the enantiomers are placed approximately in the middle between counter-rotating
vortices. This general behavior is in accordance with the predictions for the highly
idealized setting investigated in [14].
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Fig. 5.2. Enantiomer separation of a right-handed (left) and left-handed (right) L-shaped enan-
tiomer at the central streamlines. The right-handed L-shaped particle follows the vortex rotating
counter-clockwise in the upper right quadrant whereas the left-handed L-shaped particle follows the
vortex rotating clockwise in the upper left quadrant.

6. Conclusions. We have considered the numerical simulation of surface acous-
tic wave actuated separation of rigid enantiomers by the fictitious domain Lagrange
multiplier method. The surface acoustic waves are generated by an Inter-Digital
Transducer and create a flow pattern at the surface of the fluid which consists of
four pairwise counter-rotating vortices. Enantiomers that are injected onto the sur-
face approximately in the middle between two counter-rotating vortices are separated
according to their handedness. As a mathematical model, we have used a coupled
system in two space dimensions consisting of the incompressible Navier-Stokes equa-
tions and the rigid body equations of the immersed particles which are enforced by
appropriately chosen Lagrange multipliers. A model validation has been performed
by comparing experimental data and the results of numerical simulations. The sepa-
ration mechanism is such that left-handed (right-handed) enantiomers are attracted
by clockwise rotating (counter-clockwise rotating) vortices.
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