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Abstract

High order schemes for transport gain lots of popularity in scientific computing

community due to their superior properties, such as high efficiency and high res-

olution. In this dissertation, we systematically investigate the efficient high order

numerical schemes for solving transport equations.

In the first part, we develop and implement a class of high order semi-Lagrangian

(SL) schemes for linear transport equations, which are further applied to the Vlasov

simulations and global transport modeling. Compared with Eulerian type schemes,

the SL schemes can take arbitrary large time steps without stability issue, leading to

improved computational efficiency. For solving the Vlasov-Possion (VP) system, a

high order hybrid methodology, which couples discontinuous Galerkin (DG) schemes

and finite difference weighted essentially non-oscillatory (WENO) schemes, is pro-

posed in the Strang splitting framework. The hybrid scheme can take advantage of

the numerical ingredients in order to attain good numerical performance. Further-

more, an integral deferred correction method is used to correct the splitting error.

Then, the proposed SL method for linear transport is extended for solving spherical

transport equations. In particular, a SLDG scheme is formulated on the cubed-

sphere geometry. A collection of benchmark numerical tests demonstrate reliability

and efficiency of the scheme.

In the second part, via classic Fourier approach, we systematically study super-

convergence properties of DG schemes. Superconvergence analysis is important for

understanding long time behaviors of DG errors. Based on the eigen-structure anal-

ysis of the amplification matrix, we can explain that DG errors will not significantly

v



grow for long time simulations. Specifically, the part of the error that grows linearly

in time comes from the dispersion and dissipation errors of the physically relevant

eigenvalue. Such an error is superconvergent of order 2k+1, compared with the stan-

dard (k+1)th order accuracy. Furthermore, we investigate superconvergence for DG

schemes coupled with a Lax-Wendroff (LW) type time discretization. The numerical

evidence shows that the original LWDG scheme, does not numerically exhibit super-

convergence. In order to restore such properties, we propose a new LWDG scheme

by borrowing techniques from a local DG (LDG) scheme. Numerical experiments

are presented to verify superconvergence of the newly proposed scheme.
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CHAPTER 1

Introduction

The work of this dissertation consists of two parts. First, a class of high order semi-

Lagrangian (SL) schemes are formulated for solving transport problems. Second,

superconvergence properties of discontinuous Galerkin (DG) methods are investigat-

ed in different settings. In this chapter, we briefly introduce the motivation as well

as the background of the research work which provide the context of the novel work

presented in subsequent chapters. Some state-of-the-art numerical approaches are

reviewed and discussed in terms of their strength and weakness.
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1.1. TRANSPORT MODELING

1.1 Transport Modeling

Transport problems are ubiquitous in the real world where many natural phenomena

can be described by a set of transport equations. The hyperbolic conservation laws

arising from one of the most important physics laws, namely conservation, such as

mass, momentum, and energy, are known as nonlinear transport equations. Unfor-

tunately, the analytical solutions of transport equations are not always available. On

the other hand, in many applications, people seek to obtain approximate solutions

in order to understand the behavior of transport equations. To this end, the numer-

ical algorithm comes in with the aid of computers or supercomputers, and plays a

increasingly important role in academic research and real applications. In this dis-

sertation, we are interested in two types of transport problems: One is the nonlinear

Vlasov-Poisson (VP) system in plasma physics. The other is the global multi-tracer

transport model in atmosphere science.

1.1.1 Vlasov Model for Plasma Physics

Plasma is known as the fourth state of fundamental matter in the universe after solid,

liquid, and gas. In particular, it describes a typical state at high temperature and

high pressure, in which the electrons are completely dissociated from their nucleus.

Generally, there are two classes of descriptions of a plasma including the fluid models

and the kinetic models. The fluid model tracks the macroscopic quantities such as

density and average velocity at each spatial location. The well known ideal magneto-

hydrodynamics (MHD) equations belong to this category. One obvious advantage of
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1.1. TRANSPORT MODELING

fluid models is the low dimensionality (3-D in space at most plus time). However, it

is required that the plasma is sufficiently close to the thermodynamical equilibrium

in phase space. In other words, under the assumption of ample collisions of particles

such that the mean free path is much smaller than the characteristic length scale

of the plasma, the fluid models are valid. Kinetic models in describing the physics

with meso-scale lie in between the microscopic particles dynamics by Newton’s laws

of motion and macroscopic fluid models. The thermodynamical equilibrium in phase

space is not required for kinetic models at the price of high dimensionality. In fact, a

kinetic model provides a complete phase-space description of plasma by introducing

velocities as new independent variables. Therefore, the computational cost of the

kinetic model (3-D in space and 3-D in velocity plus time) is generally more expen-

sive than that of the fluid model. On the other hand, if a collisionless plasma is

considered, a kinetic model is necessary to describe the dynamics, since the plasma

may significantly deviate from the thermodynamical equilibrium.

Vlasov-Poisson System

A simple non-relativistic and collisionless model in describing a plasma with a

single species is given by the VP system,

ft + v · ∇
x
f + E(t,x) · ∇

v
f = 0, (1.1)

E(t,x) = −∇
x
φ, −∆

x
φ = −1 + ρ(t,x), (1.2)

where f(t,x,v) ≥ 0 describes the probability of finding a particle with velocity

v ∈ R3 at position x ∈ R3 at time t, E is the self-consistent electrostatic field,

3



1.1. TRANSPORT MODELING

φ is the self-consistent electrostatic potential, and ρ(t,x) =
´

R3 f(t,x,v)dv is the

electron charge density. Here a uniform distribution of ions is assumed to form a

neutralizing background. All physical constants in (1.1) have been normalized to one.

Note that, the VP system (1.1)-(1.2) is a simplified model of the full Vlasov-Maxwell

(VM) system under the assumption of negligible magnetic field.

Moments and Conservation Properties

The plasma moments are a set of the macroscopic quantities defined by the dis-

tribution function f via integrations in velocity space, after multiplication of specific

functions of v. Note that the plasma moments are physically measurable and often

provide the information of interest. The first three moments are defined as




ρ

j

W




=

ˆ

R3

f




1

v

1
2
|v|2




dv, (1.3)

which are commonly known as mass density, momentum density and kinetic energy

density. Average velocity u is defined by

u =
j

ρ
. (1.4)

The VP system conserves a bunch of physics quantities in the evolution, such as
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1.1. TRANSPORT MODELING

total mass, momentum and total energy which are defined by

total mass =

ˆ

R3

ˆ

R3

fdxdv, (1.5)

momentum =

ˆ

R3

ˆ

R3

fvdxdv, (1.6)

total energy =
1

2

ˆ

R3

ˆ

R3

f |v|2dxdv +
1

2

ˆ

R3

|E|2dx. (1.7)

These important conservation properties can be derived directly from the VP system

(1.1)-(1.2) via simple algebraic computation. Moreover, any functional in the form

of
´

R3

´

R3 G(f)dxdv remains constant in time, and all of these invariants are called

Casimir invariants, see e.g., [35, 72]. Here, we want to point out one of the most

invariants of this type, namely total entropy S = −
´

R3

´

R3 f log(f)dxdv. The fact

that the total entropy stays constant in time implies the information of the whole

system is not lost during the evolution, and hence the VP system is time reversible.

Note that it is not the case for the Boltzmann equation, for which the total entropy

grows in time due to the well known H-theorem, see e.g., [35].

In the numerical level, it is very difficult to conserve all the physical invariants

mentioned above. However, it provides a good and practical criterion to assess the

performance of numerical schemes by tracking the time evolution of these quantities.

A ‘good’ numerical scheme is supposed to ‘approximately’ conserve the quantities in

a ‘satisfactory’ manner.

5



1.1. TRANSPORT MODELING

1.1.2 Global Multi-tracer Transport in Atmosphere Sciences

During the past few decades, the atmospheric models have provided substantial in-

sight into understanding of the behaviors of atmosphere, and predicting the weather

as well as the trend of climate. The multi-tracer transport process plays a central

role in the global atmospheric modeling. A tracer, such as humidity, mixed ratio,

or a chemical species, is a typical entity moving along with the air’s motion. In the

multi-tracer transport model, O(100) tracer species need to be tracked. In other

words, the associated transport equations must be solved O(100) times at the same

time. Consequently, the total computational expense is always dominated by the

tracer transport schemes. Moreover, the large scale global transport modeling al-

so imposes great challenges on the numerical simulations. Therefore, efficient and

reliable transport schemes on the sphere are extremely desirable.

Cubed-Sphere Geometry

Traditionally, the numerical grid based on the latitude-longitude (Lat-Lon) or

polar coordinates is considered a natural choice for transport simulations on the

sphere. However, the Lat-Lon grid tends to merge towards the north and south

poles, and such polar singularity leads to computational inefficiency due to the highly

non-uniform nature of the grid. Numerous efforts are made to seek other spherical

geometry with weaker singularises for the numerical simulations, such as icosahedral

grid [71], cubed-sphere grid [95], Ying-Yang grid [79], among many others. In this

work, we consider the cubed-sphere geometry.

6



1.1. TRANSPORT MODELING

The cubed-sphere geometry was first introduced by Sadourny [100] and reintro-

duced by Ronchi et al. [95] with some improved features such as the orthogonality.

The cubed-sphere grid is constructed via a bijective mapping from a sphere to iden-

tical six faces (patches) of a cube, see Figure 1.1. Note that, unlike the Lat-Lon

grid, the cubed-sphere counterpart is free of polar singularities. Instead, a weaker

singularity on the internal edges of the cube is generated. Generally, there are two

types of the cubed-sphere grids [91] constructed via the conformal projection and

the gnomonic (equi-angular central) projection, respectively. In this work, we adopt

the cubed-sphere geometry based on the gnomonic projection, which offers a more

isotropic spherical grid. In the past two decades, the cubed-sphere-based simulations

attract lots of interest in the global atmosphere research community [76, 62, 96], since

it is known to be well-suited for the ‘local’ numerical methods including finite vol-

ume schemes [96, 62, 50], finite element DG schemes [76, 123], and spectral element

schemes [109].

7



1.1. TRANSPORT MODELING
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Figure 1.1: Schematic for the cubed-sphere geometry, the relative positions of six
cube faces (from face1 to face6) and their local connectivity.
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1.2. NUMERICAL SCHEMES FOR TRANSPORT: REVIEW

1.2 Numerical Schemes for Transport: Review

In this section, we review the numerical approaches for transport equations as well

as their applications to plasma physics and global atmospheric modeling.

1.2.1 Three Types of Numerical Approaches

Popular numerical approaches in solving transport equations can be classified into

three types: Eulerian, Lagrangian, and SL. The Lagrangian-type particle methods,

such as the very famous particle-in-cell (PIC) scheme for the Vlasov simulations, see,

e.g., [8, 54, 111], evolve the solution by following the trajectories of some sampled

macro-particles, while the Eulerian approach, e.g., [104, 28, 66, 125, 14], evolves the

state variable according to the underlying PDEs on a fixed numerical grid. The SL

approach is considered a mixed approach of Lagrangian and Eulerian in an attempt

to combine the advantages of both. In particular, the SL approach has a fixed numer-

ical grid; however, over each time step the state variable is evolved by propagating

information along characteristics. The Eulerian and the SL approaches can be con-

veniently designed to be of very high order accuracy, an advantage when compared

with the Lagrangian approach. On the other hand, because of the evolution mech-

anism, the SL method does not suffer the Courant-Friedrichs-Lewy (CFL) [33] time

step restriction as in an explicit Eulerian approach, allowing for extra large time step

evolution, and therefore less computational effort. We focus on the SL-type schemes

in this work.

9



1.2. NUMERICAL SCHEMES FOR TRANSPORT: REVIEW

1.2.2 Operator Splitting Semi-Lagrangian Scheme

The SL approach is very popular in kinetic [6, 7, 56, 38, 110] and global atmospheric

[106, 46, 90, 93, 75, 62] simulations. In kinetic simulations of plasma, a very popular

approach is the Strang splitting SL method, first proposed by Cheng and Knorr in

[13]. In particular, the Vlasov equation (1.1) is split into two lower dimensional

transport equations:

ft + v · ∇
x
f = 0 spatial advection, (1.8)

ft + E(t, x) · ∇
v
f = 0 velocity ac/deceleration. (1.9)

The advantage of performing such a splitting is that the decoupled equations of s-

patial advection and velocity ac/decelaration respectively are linear and are much

easier to evolve numerically. Consequently, numerical schemes with high order of spa-

tial accuracy have been designed, and demonstrated numerically to be more efficient

than lower order schemes in finite difference framework with different reconstruc-

tion/interpolation strategies, such as, the cubic spline interpolation [105], the cubic

interpolated propagation [78], the weighted essentially non-oscillatory (WENO) in-

terpolation [12, 84, 85]; in finite volume framework for the VP system [39] and for

the guiding center Vlasov equation [34]; and in finite element DG framework [97, 87].

In the atmospheric simulation, the operator splitting-based SL scheme for transport

is also one of prominent numerical approaches at present [68, 65], since the com-

plicated regriding procedure in a non-splitting SL scheme, e.g., the conservative SL

multi-tracer transport (CSLAM) scheme [62], is completely avoided. On the other

10



1.2. NUMERICAL SCHEMES FOR TRANSPORT: REVIEW

hand, despite great computational efficiency and convenience of the operator split-

ting SL approaches, the numerical error in time is dominated by the splitting error,

which is relatively low order (O(∆t2)) [108]. It is therefore important to circumven-

t such low order splitting errors in the SL framework, in order to have numerical

algorithms that attain higher orders of accuracy in both space and time.

1.2.3 High Order Numerical Schemes

Here, we would like to point out the advantages of using high order numerical schemes

for transport simulations. Historically, the monotone scheme for solving transport

equations was commonly used in real applications due to its remarkable features, such

as the provable convergence property in very general settings. However, people later

realized that the monotone scheme is first order accurate at most, and the numerical

solution is smeared very quickly owing to excessive numerical viscosity, see e.g., [67].

Then, a class of high resolution schemes were developed in order to achieve improved

numerical performance [66, 67]. This type of schemes features a famous stability

property, namely total variation diminishing (TVD), i.e., the total variation of the

numerical solution is always non-increasing when evolving the scheme. Meanwhile,

the numerical viscosity is significantly reduced compared with the monotone schemes,

and hence much more accurate and reliable results are provided by the high resolution

schemes. Even today, high resolution schemes are considered prominent schemes in

scientific computing community. In spite of the great success [66], high resolution

schemes also suffer the relatively low order accuracy. In fact, the scheme is only

first order accurate in the vicinity of extrema of the solution. A breakthrough of

11



1.3. NUMERICAL PROPERTY: SUPERCONVERGENCE OF DG SCHEMES

developing uniformly high order accurate schemes with good stability properties was

made by Harten et al. in [51], where the famous ENO scheme was proposed. Later, an

improved version, WENO scheme was developed in [69, 60]. Note that ENO/WENO

schemes are in the finite volume or finite difference framework, in which the high order

accuracy is obtained by the adoption of wide stencils. On the other hand, in the finite

element framework, DG schemes developed by Cockburn, Shu, and their collaborates

are known to be high order accurate and nonlinearly stable owing to the cell entropy

inequality [59]. The high order accuracy of DG is obtained by increasing the degrees

of used approximation space. Nowadays, high order schemes gain lots of popularity

in research and real applications, see, e.g., [24]. Compared with low order schemes,

the high order ones have relatively low numerical dissipation and superior ability

in resolving fine solution structures in long time integrations with relatively coarse

numerical meshes. Therefore, when considering large scale numerical simulations,

the high order numerical schemes are more desirable since convergence study with

very fine mesh refinement for low order schemes is unaffordable.

1.3 Numerical Property: Superconvergence of DG

Schemes

The DG and local DG (LDG) methods are a class of finite element methods, designed

for solving hyperbolic and parabolic problems, among many others [32]. These meth-

ods use piecewise polynomial spaces of degree k that could be discontinuous across

12



1.3. NUMERICAL PROPERTY: SUPERCONVERGENCE OF DG SCHEMES

cell boundaries as solution and test function spaces. These methods have the ad-

vantages of being compact and flexible for unstructured meshes, and being suitable

for h-p adaptivity. Moreover, it has been rigorously proved that both DG and LDG

methods are (k+1)th order accurate in the L2 norm for linear problems with smooth

enough solutions [32] for 1-D cases. For general meshes, DG solutions are proved to

be (k + 1
2
)th order accurate for linear hyperbolic problems [81]. These methods also

have some inherit dissipation mechanism for L2 stability of nonlinear problems in

the semi-discrete sense, see e.g., [59, 114] and references there in.

In this work, our focus is on superconvergence properties of DG and LDG so-

lutions. Superconvergence properties of DG and LDG methods for hyperbolic and

parabolic problems have been intensively investigated in the past. Lowrie et al. [70]

discovered that when the piecewise polynomial space of degree k is used, “a compo-

nent of error” of the DG method converges with order 2k + 1 in the L2 norm. It is

showed in [27, 57] that the DG and LDG solutions converge with order 2k+1 in terms

of the negative-order norm if the exact solution is globally smooth. Based on the

negative-order norm estimate, the DG and LDG solutions on translation invariant

grids can be post-processed via a kernel convolution with B-spline functions. The

post-processed solution, which is proved to converge with order 2k+1 in the L2 nor-

m, is much more accurate than the original numerical solution ((k + 1)th order), see

[27, 99, 57]. Adjerid et al. in [1] analyzed the DG method in the setting of ordinary

differential equations (ODEs) with a conclusion that the DG solution converges with

order k + 2 at Radau points of each element, and with order 2k + 1 at downwind

points. In [2], Adjerid et al. numerically investigated superconvergence of DG and

13



1.3. NUMERICAL PROPERTY: SUPERCONVERGENCE OF DG SCHEMES

LDG schemes for convection-diffusion equations at Radau points. Cheng and Shu in

[15, 16, 17] showed that the DG or LDG solution is closer to the Radau projection

of the exact solution than the exact solution itself. As a result, the error of a DG or

LDG solution will not grow over a long time period O( 1√
∆x

). In [55, 3, 4, 101, 103],

Fourier analysis has been adopted to investigate superconvergence properties of DG

schemes in terms of dispersion and dissipation error of physically relevant eigenval-

ues, see e.g., [55, 3, 4]. Zhong and Shu [124] used the Fourier analysis and symbolic

computation to show that the DG method is superconvergent at Radau and down-

wind points with order of k + 2 and 2k + 1, respectively. In [117], the DG solutions

are proved to converge at the optimal rate of k + 2 at Radau points under a general

assumption of non-uniform meshes. More recently, Cao et al. constructed anoth-

er special projection of the exact solution, which is even closer to the DG solution

than the Radau projection ((2k + 1)th order) [11]. Because of these superconver-

gence properties, the method is considered to be very competitive in resolving waves

propagation with long time integrations.

Different approaches have been adopted to analyze superconvergence properties

of DG schemes, such as the negative-order norm estimate [27, 57], by considering the

problem as an initial or boundary value problem [1, 55, 3, 4], by special decomposition

of error and playing with test functions in the weak formulation [15, 117, 11], Fourier

analysis [124, 101, 103, 116] etc. Fourier analysis has been known to be limited

to linear problems with periodic boundary conditions and uniform mesh. However,

it provides a sufficient condition for instability of ‘bad’ schemes [119] as well as a

quantitative error estimate. It can be used as a guidance to study the numerical

14



1.4. SCOPE OF THE WORK

properties in more general settings [124].

1.4 Scope of the Work

In this dissertation, we focus on two primary topics: (1) the development of a class

of high order SL methods for the Vlasov simulations and global transport modeling;

and (2) the theoretical study of superconvergence properties of DG schemes.

This dissertation is organized as follows. In Chapter 2 we review the formulations

of DG and LDG schemes. In Chapter 3 we construct a class of high order SL

methods for solving the VP system and global transport equations on the cubed

sphere. Chapter 4 pursues theoretical analysis of superconvergence properties of DG

schemes in different settings. Finally, conclusions and future work are presented in

Chapter 5.
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CHAPTER 2

DG and LDG Schemes

In this chapter, we review the finite element DG schemes and LDG schemes for

solving hyperbolic conservation laws and parabolic equations. We only consider 1-

D cases for simplicity. Both schemes are demonstrated to be effective, robust, and

reliable in real applications. Moreover, they serve as the building blocks for the

schemes developed in the subsequent chapters. Another purpose of this chapter is

to introduce notations used throughout the dissertation.

Historically, the DG schemes was proposed by Reed and Hill in [92] for solving the

neutral transport equations. Then, the DG schemes were generalized to hyperbolic

problems, arising from many areas of science and engineering, especially in the field of

16



2.1. ALGORITHM FORMULATION OF DG SCHEMES

computational fluid dynamics, by Cockburn, Shu, and their collaborators through a

series of papers [29, 28, 26, 23, 31]. A breakthrough of extending the DG schemes for

PDEs with high order derivatives was made by Bassi and Rebay in the framework of

the compressible Navier-Stokes equations, see [5]. Later, Cockburn and Shu proposed

the LDG schemes which can deal with general convection-dominated systems [30, 32].

2.1 Algorithm Formulation of DG Schemes

In this section, we review the algorithm formulation of the DG schemes. Some

implementation details are also provided.

Consider the following one-dimensional (1-D) hyperbolic conservation laws prob-

lem

ut + f(u)x = 0, x ∈ [a, b], t > 0, (2.1)

with suitable initial and boundary conditions. f(u) here is the flux function. Note

that there are two different meanings of f throughout the dissertation. One is the

flux function of a hyperbolic conservation law, the other is the distribution function

of the VP system. The readers can easily figure out the meaning of f from the given

context without any confusion. To define the DG schemes, we consider a partition

of the computational domain [a, b] into N cells as follows:

a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b.

17
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Denote the cell by Ij = [xj− 1
2
, xj+ 1

2
] and the cell center by xj =

1
2

(
xj+ 1

2
+ xj− 1

2

)
, for

j = 1, · · · , N . The length of the cell is denoted by ∆xj = xj+ 1
2
− xj− 1

2
and the mesh

size ∆x = max1≤j≤N ∆xj . Define the approximation space as

V k
h =

{
v : v|Ij ∈ P k(Ij); 1 ≤ j ≤ N

}
, (2.2)

where P k(Ij) denotes the set of polynomials of degree up to k on cell Ij . The semi-

discrete DG method for solving (2.1) is defined as follows: find uh ∈ V k
h such that

∀v ∈ V k
h , we have

ˆ

Ij

(uh)tv dx−
ˆ

Ij

f(uh)vx dx+ f̂j+ 1
2
v−
j+ 1

2

− f̂j− 1
2
v+
j− 1

2

= 0, j = 1, · · · , N. (2.3)

Here and below u+
h = uh(x

+), u−
h = uh(x

−) denote the right and left limits of the

function uh at a spatial location x, respectively. The numerical flux f̂ = f̂(u−
h , u

+
h )

is defined at the cell interface and should satisfy the following requirements:

• Consistency: f̂(u, u) = f(u);

• Continuity: f̂(., .) is Lipschitz continuous with respect to both arguments;

• Monotonicity: f̂(., .) is non-decreasing with the first argument and non-increasing

with the second argument.

Below, we list several commonly used monotone numerical fluxes.

18
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• Godunov flux:

f̂(a, b) =





mina≤u≤b f(u), if a ≤ b,

maxb≤u≤a f(u), if b < a;

• Engquist-Osher flux:

f̂(a, b) =

ˆ a

0

max(f ′(u), 0)du+

ˆ b

0

min(f ′(u), 0)du+ f(0);

• Lax-Friedrichs flux:

f̂(a, b) =
1

2
(f(a) + f(b)− α(b− a)) ,

where α = maxu |f ′(u)| with the maximum taken in the computational domain.

When implementing the DG scheme (2.3), we need to choose a set of basis func-

tions of V k
h . For example, the local orthogonal Legendre basis function:

φ0
j(x) = 1, φ1

j(x) =
x− xj

∆xj

, φ2
j(x) =

(
x− xj

∆xj

)2

− 1

12
, . . . , x ∈ Ij ,

for j = 1, . . . , N can be used. Then, the numerical solution can be represented as

uh(t, x) =
k∑

l=0

ul
j(t)φ

l
j(x), x ∈ Ij , (2.4)
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where ul
j(t) are the degrees of freedom. Denote by

uj(t) =
(
u0
j(t), · · · , uk

j (t)
)T

. (2.5)

Plugging (2.4) into the DG scheme (2.3), we arrive at an ODE system for the

degrees of freedom:

d

dt
uh(t) = L(uh(t)), (2.6)

where L(.) is the spatial discretization operator of the DG scheme.

2.2 Algorithm Formulation of LDG schemes

In this subsection, we review the LDG scheme [30] for solving the following 1-D

diffusion equation:

ut = (c(u)ux)x, x ∈ [a, b], t > 0, (2.7)

with suitable initial and boundary conditions. Here we assume c(u) ≥ 0. The domain

discretization is same as the DG scheme. In order to define the LDG scheme, we

rewrite equation (2.7) into the following system by introducing an auxiliary variable

p =
√

c(u)ux:

ut =(q′p)x, (2.8)

p =qx, (2.9)
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where q(u) =
´ u√

c(s) ds. The semi-discrete LDG method for solving (2.8)-(2.9) is

defined as follows: find uh, ph ∈ V k
h such that ∀v, w ∈ V k

h , we have

ˆ

Ij

(uh)tv dx+

ˆ

Ij

q′phvx dx− q̂′phj+ 1
2
v−
j+ 1

2

+ q̂′phj− 1
2
v+
j− 1

2

= 0,

ˆ

Ij

phw dx+

ˆ

Ij

qwx dx− q̂j+ 1
2
w−

j+ 1
2

+ q̂j− 1
2
w+

j− 1
2

= 0,

(2.10)

for j = 1, · · · , N . q̂′ph and q̂ are numerical fluxes that are carefully designed for

attaining provable L2 stability in the semi-discrete sense. For example, in [30], the

following numerical fluxes were proposed,

q̂′ph =
Jq(uh)K

JuhK
p−h , (2.11)

q̂ = q(u+
h ), (2.12)

where

JuhK = u+
h − u−

h

denotes the jump of function uh at a spatial location.

Note that the LDG solution can be represented in the form of (2.4). Plugging

(2.4) into the LDG scheme (2.10), we obtain a similar ODE system as (2.6) for the

degrees of freedom of the LDG scheme.
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2.3 Time Discretization: Runge-Kutta Methods

The time variable in the DG and LDG schemes can be further discretized through

an explicit high order Runge-Kutta (RK) method in a method of lines (MOL)

framework. The resulting fully discrete schemes are usually termed the RKDG and

RKLDG schemes in the literature. In the simulations, a strong stability preserving

(SSP) RK method is preferred [44, 43], since it can help enhance numerical stability

and control spurious oscillations by maintaining the strong stability properties of the

forward Euler time stepping. Despite great success in many applications, the RKDG

and RKLDG schemes are known to suffer a CFL time step restriction. For instance,

the time step ∆t of a RKDG scheme obeys

∆t ≤ CFL

|ax|
min
j

∆xj (2.13)

where |ax| is the maximum wave propagation speed and CFL is a constant depending

on the DG scheme and RK method being used.

Below, we list several SSP RK methods. For illustrative purposes, we consider

the following ODE systems:

d

dt
u(t) = L(u(t)).

Donate a p1-stage p2-order SSP RK method by SSPRK(p1, p2).
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• SSPRK(2,2):

u(1) = un +∆tL(un),

un+1 =
1

2
un +

1

2
(u(1) +∆tL(u(1)));

• SSPRK(3,3) [104]:

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
(u(1) +∆tL(u(1))),

un+1 =
1

3
un +

2

3
(u(2) +∆tL(u(2)));

• SSPRK(5,4) [43]:

u(1) = un + 0.391752226571890∆tL(un),

u(2) = 0.444370493651235un + 0.555629506348765u(1)

+0.368410593050371∆tL(u(1)),

u(3) = 0.620101851488403un + 0.379898148511597u(2)

+0.251891774271694∆tL(u(2)),

u(4) = 0.178079954393132un + 0.821920045606868u(3)

+0.544974750228521∆tL(u(3)),

un+1 = 0.517231671970585u(2) + 0.096059710526147u(3)

+0.063692468666290∆tL(u(3)) + 0.386708617503269u(4)

+0.226007483236906∆tL(u(4))
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• SSPRK(9,9) [44], denote by u(0) = un:

u(i) = u(i−1) +∆tL(u(i−1)), i = 1, · · · , 8,

un+1 =

7∑

i=0

α9,iu
(i) + α9,8(u

(8) +∆tL(u(8))),

where

α9,0 =
16687

45360
; α9,1 =

2119

5760
; α9,2 =

103

560
;

α9,3 =
53

864
; α9,4 =

11

720
; α9,5 =

1

320
;

α9,6 =
1

2160
; α9,7 =

1

10080
; α9,8 =

1

362880
.

Note that SSPRK(9,9) is only valid when operator L is linear.
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CHAPTER 3

High Order Semi-Lagrangian Schemes

The aim of this chapter is to formulate a class of high order SL methods for solv-

ing the VP system and global transport equations on the cubed sphere. First, two

formulations of high order SLDG schemes are developed for solving linear transport

equations. Note that the two formulations are mathematically equivalent, but they

differ in the numerical discretization and hence produce different numerical results.

Second, high order SL finite difference WENO (SLWENO) schemes for linear trans-

port equations are introduced. Then, these high order SL schemes are applied to the

Vlasov simulations and global transport modeling in different settings.
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3.1 High Order Semi-Lagrangian DG Schemes

As we discussed in Chapter 1, the RKDG schemes suffer the stringent CFL time step

restriction which leads to computational inefficiency in many applications. Moreover,

the situation deteriorates when increasing the degree of the used approximation

space. In particular, it is pointed out in [32] that

CFL ≈ 1

2k + 1

for DG discretizations using V k
h combined with (k+1)th order accurate RK schemes.

In order to overcome the shortcoming, we consider coupling the SL approach with

the DG spatial discretizations. The resulting SLDG scheme differs from the RKDG

scheme in its time evolution mechanism. Specifically, characteristics are being tracked

over time in the SLDG formulation. However, we note that the tracking of char-

acteristics can be theoretically and computationally complicated for nonlinear and

multi-dimensional problems. First, we consider the following 1-D linear transport

equations in the conservative form:

ut + (a(t, x)u)x = 0, (3.1)

where a can be variable coefficient depending on t and x. In the following two sub-

sections, we will formulate two types of SLDG schemes for solving (3.1). Notations

used in this section are consistent with Chapter 2.
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3.1.1 First Formulation

The first formulation we will introduce below is propose by Qiu and Shu in [85]

is designed based on the semi-discrete DG scheme (2.3) with flux function f(u) =

a(t, x)u. Specifically, we integrate equation (2.3) in time from [tn, tn+1] and obtain,

ˆ

Ij

un+1
h vdx =

ˆ

Ij

un
h · vdx+

ˆ tn+1

tn

ˆ

Ij

auh(t, x)vxdxdt (3.2)

−
ˆ tn+1

tn

(
âuh(t, xj+ 1

2
)vj+ 1

2
− âuh(t, xj− 1

2
)vj− 1

2

)
dt,

where un
h = uh(t

n, x) denotes the numerical solution at time level tn. In order

to attain unconditional stability for scheme (3.2), the time integration of the flux

function terms have to be evaluated in the SL fashion. To do that, we observe in

Figure 3.1 that at a fixed spatial location at time level tn+1, say (xj− 1
2
, tn+1), there

exists a backward characteristic curve, with the foot (departure point) located on

time level tn at x⋆
j− 1

2

. We denote the region Ωj− 1
2
to be the region bounded by the

three points (xj− 1
2
, tn+1), (xj− 1

2
, tn) and (x⋆

j− 1
2

, tn). We apply the divergence theorem

to the integral form of equation (3.1) over the region Ωj− 1
2
, and obtain

ˆ tn+1

tn
âuh(t, xj− 1

2
)dt =

ˆ x
j− 1

2

x⋆

j− 1
2

un
h(x)dx, (3.3)

which can be used to evaluate the time integration of the flux terms on the r.h.s. of

equation (3.2). Note that the numerical solution un
h is available everywhere in the

computational domain. The volume integral in (3.2) can be evaluated in a similar

way. First, we denote xig for ig = 1, 2, . . . , k + 1 are k + 1 local Gaussian points on
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cell Ij and wig are the corresponding quadrature weights over a unit length interval.

The volume integral can be approximated by

ˆ tn+1

tn

ˆ

Ij

auh(t, x)vxdxdt ≈
k+1∑

ig=1

wigvx(xig)

ˆ tn+1

tn
auh(t, xig)dt (3.4)

=∆xj

k+1∑

ig=1

wigvx(xig)

ˆ xig

x⋆
ig

un
h(x)dx,

where x⋆
ig denotes the foot of the characteristic curve emanating from (tn+1, xig).

In summary, the SLDG scheme is formulated as follows: given un
h ∈ V k

h , find

un+1
h ∈ V k

h such that ∀v ∈ V k
h , equation (3.2) holds with the flux integrals and the

volume integral specified in (3.3) and (3.4), respectively.

Ij-1 Ij
tn

tn+1
x

j-1/2
x

j+1/2

x*
j-1/2 Ωj+1/2

Figure 3.1: SL scheme approximates equation (3.1).
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3.1.2 Second Formulation

The second SLDG formulation is based on the weak formulation of characteristic

Galerkin method of [18, 98], which is proposed in [46]. We also consider the 1-D

linear transport equation (3.1). To update the solution at the time level tn+1 over

a cell Ij from the solution at tn, we let the test function V (t, x) satisfy the adjoint

problem with v ∈ V k
h , 




Vt + a(t, x)Vx = 0,

V (tn+1) = v(x).

(3.5)

We remark that for the above advective form of equation (3.5), the solution stays

constant along the characteristic curve; while for the conservative form of equation

(3.1), the solution varies along the curve. It can be shown that

d

dt

ˆ

Ij(t)

u(t, x)V (t, x)dx = 0, (3.6)

where Ij(t) is a dynamic interval bounded by characteristics emanating from cell

boundaries of Ij at t = tn+1. Equation (3.6) can be proved by the following:

d

dt

ˆ

Ij(t)

u(t, x)V (t, x)dx

=
dx

dt

∣∣∣∣
x
j+1

2

u(t, xj+ 1
2
(t))V (t, xj+ 1

2
(t))− dx

dt

∣∣∣∣
x
j− 1

2

u(t, xj− 1
2
(t))V (xj− 1

2
(t), t)

−
ˆ

Ij(t)

(a(t, x)u(t, x))xV (t, x)dx+

ˆ

Ij(t)

u(t, x)Vt(t, x)dx
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= auV |(t,x
j+1

2
(t)) − auV |(t,x

j− 1
2
(t)) −

(
auV |(t,x

j+1
2
(t)) − auV |(t,x

j− 1
2
(t))

)

+

ˆ

Ij(t)

a(t, x)u(t, x)Vx(t, x)dx−
ˆ

Ij(t)

u(t, x)a(t, x)Vx(t, x)dx

= 0.

A SL time discretization of (3.6) leads to

ˆ

Ij

un+1vdx =

ˆ

I⋆j

unV (tn, x)dx, (3.7)

where I⋆j
.
= [x⋆

j− 1
2

, x⋆
j+ 1

2

] with x⋆
j± 1

2

being the foot of the characteristic curve emanat-

ing from (tn+1, xj± 1
2
) at time tn. To update the numerical solution un+1

h , the following

procedures are performed.

1. Locate the foot of the characteristics x⋆
j± 1

2

(see, Figure 3.2 (left)). We numeri-

cally solve the following final-value problem (characteristic equation):

d

dt
x(t) = a(t, x(t)) (3.8)

with the final-value x(tn+1) = xj± 1
2
by a high order numerical integrator such

as a classical fourth order RK method.

2. Detect intervals/sub-intervals within I⋆j = ∪lI
⋆
j,l, which are all the intersections

between I⋆j and the grid elements. (l is the index for sub-interval). For example,

in Figure 3.2 (left), there are two sub-intervals: I⋆j,1 = [x⋆
j−1/2, xj−1/2] and

I⋆j,2 = [xj−1/2, x
⋆
j+1/2].

3. Locate the k+1 local Gaussian-Lobatto (GL) points over each I⋆j,l. We denote
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them as x⋆
j,l,ig (ig is the index for GL points). See the red circles as 4 GL points

per sub-interval in Figure 3.2 (right).

4. Trace the characteristics forward in time from (tn, x⋆
j,l,ig) to (tn+1, xj,l,ig). E-

specially, similar to the final-value problem above, we use a high order time

integrator to numerically solve an initial value problem (3.8) with the initial-

values x(tn) = x⋆
j,l,ig (see the green curve and circles in Figure 3.2 (right)).

From the advective form of the adjoint problem (3.5) one has

V (tn, x⋆
j,l,ig) = v(xj,l,ig).

5. Use the GL quadrature rule to evaluate

ˆ

I⋆j

un
hV (tn, x)dx ≈

∑

l

(
k+1∑

ig=1

wigu
n
h(x

⋆
j,l,ig)v(xj,l,ig)Γ(I

⋆
j,l)

)
, (3.9)

with wig being the quadrature weights for a unit length interval and Γ(I⋆j,l) being

the length of interval I⋆j,l. Note that the accuracy of the GL quadrature rule is

order of 2k when k+1 GLL points are used. As in the classical DG formulation,

the evaluation of volume integral will not destroy the (k+1)th order of accuracy

for the SLDG scheme. Moreover, the mass conservation properties are not

affected since the numerical integration is exact for a polynomial of degree k

with the test function v = 1. As an alternative, the Gaussian quadrature rule

can be used to compute the integrals.

6. Finally, find un+1
h ∈ V k

h , s.t. (3.7) is satisfied ∀v ∈ V k
h with the r.h.s term
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Ij-1 Ij
tn

tn+1
x

j-1/2
x

j+1/2

x*
j-1/2

Ij-1 Ij
tn

tn+1
x

j-1/2
x

j+1/2

x*
j-1/2

x*
j+1/2

x*j,l,ig

xj,l,ig

Figure 3.2: Schematic showing the 1-D SLDG scheme (3.7)-(3.9) (second formula-
tion). Step i and Step ii (left); Step iii and Step iv (right). 4 GL points per cell are
used as an example.

evaluated as described above.

Remark 3.1. Note that the proposed 1-D algorithm is fourth order accurate in time

in the sense of local truncation error, i.e.

1

∆t
|x⋆

j± 1
2
− x(tn; xj± 1

2
, tn+1)| = O(∆t4),

1

∆t
|xj,l,ig − x(tn+1; x⋆

j,l,ig, t
n)| = O(∆t4)

with a fourth order RK method for tracing characteristics. Here ∆t = tn+1 − tn;

x(tn; xj± 1
2
, tn+1) and x(tn+1; x⋆

j,l,ig, t
n) denote the exact solutions of the characteris-

tic equation (3.8) with final-value x(tn+1) = xj± 1
2
and initial-value x(tn) = x⋆

j,l,ig,

respectively.

Remark 3.2. The proposed second SLDG formulation differs from the first formu-

lation (3.2) and the one proposed in [94], which follow an Eulerian volume (fixed

spatial cell) with numerical fluxes obtained from tracing the characteristics. Howev-

er, the second formulation follows the Lagrangian volume dynamically moving with
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the characteristics, in the same spirit as in [97]. Also note that, the proposed formu-

lation is more general than that in [97], in the sense that it permits a non-uniform

velocity field and is extendable to curvilinear coordinates, whereas the SLDG method

in [97] can only be applied to problems with constant velocity.

3.1.3 The Bound-Preserving (BP) Filter

It is known that equation (3.1) is mass conservative. However, the solution does not

fulfill the maximum principle, i.e. the solution in the future time will not be bounded

by the lower and upper bound of the initial condition. On the other hand, if the

initial condition for (3.1) is positive (u(t = 0, x) ≥ 0, ∀x), then the future solution

stays positive (u(t, x) ≥ 0, ∀x, t). We call such property as positivity preserving

(PP). In the SLDG schemes (the first formulation and the second formulation), it

can be easily checked that the updated cell average at tn+1 stays positive, if the

numerical solution un
h (piecewise polynomial function) at tn is positive. However,

the numerical solution un+1
h at tn+1 does not necessarily stay positive. To ensure

PP of the numerical solution, we apply a BP filter [121, 122, 87, 123], if the initial

condition stays positive. The procedure of the BP filter can be viewed as ensuring

the positivity of the numerical solution by a linear rescaling around the cell averages,

with the assumption that the cell averages are positivity preserving. In particular,

the numerical solution is modified from u(x) to ũ(x) such that it maintains the high

order accuracy of the original approximation, conserves the cell average (mass), and
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preserves positivity:

ũ(x) = θ(u(x)− ū) + ū, θ = min

{∣∣∣∣
ū

m′ − ū

∣∣∣∣ , 1
}
, (3.10)

where ū is the cell average of the numerical solution and m′ is the minimum of u(x)

over a given cell. A formal proof can be found in [121] (Lemma 2.4). To implement

the BP filter, the minimum of the numerical solution m′ is needed. In our numerical

tests, we use up to P 3 polynomials, the minimum of which can be easily found by

locating the zeros of their derivatives. The proposed SLDG methods with the BP

filter enjoy the L1 (mass) conservation, the proof of which can be found in [87].

3.2 High Order Semi-Lagrangian WENO Schemes

Another successful numerical method, in the class of finite difference schemes, for

computational fluid dynamics as well as kinetic simulations, is the high order finite

difference WENO scheme [60]. The SSP RK method can be used for time evolution.

The most distinctive feature of finite difference WENO scheme is its ability in resolv-

ing complicated solution structures in a robust and stable way when compared with

a DG scheme; as well as its ease and flexibility in multi-dimensional implementations

by working with point values in a dimension-by-dimension fashion when compared

with a finite volume method.

Similar to the SLDG schemes, instead of using SSP RK time integrator, one can

use the SL evolution mechanism to evaluate the time integral of the flux functions.
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In this section, we formulate a high order SLWENO scheme for the 1-D transport

equation (3.1), which has been shown to be successful due to the conservative nature

of the scheme formulation, the flexibility of the finite difference framework, the ro-

bustness of WENO reconstruction and the large time step efficiency of SL methods

[85].

Unlike finite element schemes, the computational domain in a finite difference

framework is discretized by the uniformly distributed grid points

a = x0 < · · · < xi · · · < xN = b.

We still denote ∆x = (b−a)/N as the mesh size, and denote by xi+1/2 = (xi+xi+1)/2.

Let un
j be the point value of numerical solution at grid point xj and time level tn.

Similar to the first SLDG formulation (3.2), the SLWENO scheme is based on

integrating the conservative form of equation (3.1) over [tn, tn+1],

u(tn+1, x) = u(tn, x)−
(
ˆ tn+1

tn
a(t, x)u(t, x)dt

)

x

.

Evaluating the above equation at the grid point xj gives

un+1
j = un

j −
(
ˆ tn+1

tn
a(t, x)u(t, x)dt

)

x

∣∣∣∣∣
x=xj

= un
j − Fx

∣∣∣
x=xj

, (3.11)

where F(x)
.
=
´ tn+1

tn
a(t, x)u(t, x)dt. Let H(x) be a function whose sliding average is
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F(x), i.e.,

F(x) =
1

∆x

ˆ x+∆x
2

x−∆x
2

H(ξ)dξ. (3.12)

Taking the x derivative of the above equation gives

Fx =
1

∆x

(
H(x+

∆x

2
)−H(x− ∆x

2
)

)
.

Therefore the equation (3.11) can be written in a conservative form as

un+1
j = un

j −
1

∆x
(H(xj+ 1

2
)−H(xj− 1

2
)), (3.13)

whereH(xj+ 1
2
) is called the flux function. Again, H(xj+ 1

2
) should be approximated in

a SL fashion in order to attain the unconditional stability. By following information

along characteristics, i.e., (3.3), F(xj) =
´ tn+1

tn
a(t, xj)u(t, xj)dt =

´ xi

x⋆
j

u(tn, x)dx can

be evaluated by reconstructing function u at tn from neighboring point values, where

x⋆
j denotes the foot of the characteristic curve at tn. We denote this reconstruction

procedure as R1. Similar to the idea in the finite difference WENO scheme, H(xj+ 1
2
)

can be reconstructed in high order from several of its neighboring cell averages

H̄k =
1

∆x

ˆ x
k+1

2

x
k−1

2

H(ξ)dξ
(3.12)
= F(xk), k = j − p, · · · , j + q.

We denote this reconstruction procedure as R2.

In summary, a SL finite difference scheme in evolving equation (3.1) from tn to

tn+1 can be designed as follows:
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1. At each of the grid points at time level tn+1, say (xi, tn+1), trace the character-

istic back to time level tn by solving the characteristic equation (3.6) and get

the foot x⋆
j .

2. Reconstruct F(xj) =
´ tn+1

tn
au(t, xj)dt =

´ xj

x⋆
j

udx from {un
j }Nj=1. We use R1

to denote this reconstruction procedure R1[x
⋆
j , xj ](f

n
j−p1, · · · , un

j+q1) in approx-

imating F(xj), where (j − p1, · · · , j + q1) indicates the stencil used in the

reconstruction. R1[c, d] indicates the reconstruction of
´ d

c
u(t, x)dx.

3. Reconstruct {H(xj+ 1
2
)}Nj=0 from {H̄j}Nj=1. We use R2 to denote this recon-

struction procedure F̂j+ 1
2

.
= R2(H̄j−p2, · · · , H̄j+q2) in approximating H(xj+ 1

2
),

where (j − p2, · · · , j + q2) indicates the stencil used in the reconstruction.

4. Update the solution {un+1
j }Nj=1 by

un+1
j = un

j −
1

∆x
(F̂j+ 1

2
− F̂j− 1

2
), (3.14)

with numerical fluxes F̂j± 1
2
computed in the previous step.

When the reconstruction stencils in R1 and R2 above only involve one neighboring

point value of the solution, then the scheme is first order accurate in space. In

fact, the scheme reduces to a first order upwind scheme when the time step is under

the CFL restriction. The proposed SL finite difference scheme can be designed to

be of high order accuracy by including more points in the stencil for R2 ◦ R1, the

composition of R1 and R2, to reconstruct the numerical flux

F̂j+ 1
2
= R2 ◦ R1(u

n
j−p, · · · , un

j+q), (3.15)

37



3.2. HIGH ORDER SEMI-LAGRANGIAN WENO SCHEMES

where (j− p, · · · , j+ q) indicates the stencil used in the reconstruction process. The

WENO mechanism can be introduced in reconstruction procedures as a stable and

non-oscillatory method to capture fine-scale structures. It is numerically demon-

strated in [84, 85, 86] that the high order SLWENO method works very well in the

Vlasov and incompressible flow simulations with extra large time step evolution.

There are different conservative SL finite difference procedures proposed in [84, 85,

86]. These approaches have similar performance for linear advection equations with

constant coefficients. Below, we briefly review another SLWENO scheme proposed in

[84]. Assume the velocity a is a constant and let ξ0 = a∆t
∆x

. Without loss of generosity,

we assume ξ0 ∈ [0, 1
2
]. When ξ0 ∈ [−1

2
, 0], a similar but symmetric procedure can be

applied. Otherwise, ξ0 can be shifted to [−1
2
, 1
2
] via grid shifting.

By using the fact that the solution stays constant along characteristics, i.e.,

u(tn+1, xj) = u(tn, xj − a∆t),

the solution can be updated via a high order reconstruction of u(xj − a∆t, tn) from

neighboring point values. Taking a third order reconstruction for example, see Figure

3.3, we obtain

un+1
j = un

j + (−1

6
un
j−2 + un

j−1 −
1

2
un
j −

1

3
un
j+1)ξ0

+(
1

2
un
j−1 − un

j +
1

2
un
j+1)ξ

2
0

+(
1

6
un
j−2 −

1

2
un
j−1 +

1

2
un
j −

1

6
un
j+1)ξ

3
0 , (3.16)
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v r r r v v v v v r r r v tn+1

v r r r v v �
�
�
�
�
���

v v v r r r v tn

x0 xj−2 xj−1 xj xj+1 xj+2 xN
ξ0 ∈ [0, 1

2
]

Figure 3.3: SL finite difference WENO reconstruction.

Based on the linear reconstruction (3.16), a nonlinear WENO reconstruction can

be introduced to suppress numerical oscillations when the solution is under-resolved

[12]. However, the mass conservation, which is a very important property for solving

hyperbolic conservation laws, may be lost. To ensure the mass conservation, equation

(3.16) is rewritten in a flux difference form:

un+1
j = un

j − ξ0(F̂j+ 1
2
− F̂j− 1

2
). (3.17)

F̂j+ 1
2
is the numerical flux defined as

F̂j+ 1
2

= (un
j−1, u

n
j , u

n
j+1) · CL

3 · (1, ξ0, ξ20)′, (3.18)

where

CL
3 =




−1
6

0 1
6

5
6

1
2

−1
3

1
3

−1
2

1
6




.
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3.3. EXTENSION TO MULTI-DIMENSIONAL PROBLEMS VIA

DIMENSIONAL SPLITTING

Similarly, the WENO mechanism can be incorporated into the reconstruction

procedure of the numerical flux F̂j+ 1
2
in order to control non-physical oscillations.

The algorithm can be generalized to higher order reconstructions, e.g., 5th, 7th, and

9th order, see [84].

Remark 3.3. Note that the SLWENO scheme (3.14)-(3.15) from [85] is more gen-

eral in the sense that it can be applied to linear transport equations with variable

coefficients. For solving transport equations with a constant coefficient, such as the

split Vlasov equations (1.8)-(1.9), the SLWENO scheme from [84], e.g., (3.17)-(3.18)

for a third order scheme, can also be applied. However, for the guiding center Vlasov

model, the split equations have variable coefficients. Hence, the SLWENO scheme

(3.14)-(3.15) is needed.

3.3 Extension to Multi-dimensional Problems via

Dimensional Splitting

The 1-D SL schemes can be extended to multi-dimensional algorithms via the sec-

ond order Strang dimension splitting based on a Cartesian mesh, see, e.g., [108].

Below, we sketch the idea of the algorithm for SLDG schemes, which also applies to

SLWENO schemes with some minor modifications.

Consider a 2-D transport equation in the conservative form

ut + (a(t, x, y)u)x + (b(t, x, y)u)y = 0. (3.19)
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DIMENSIONAL SPLITTING

When the velocity field (a, b) is non-divergent, i.e., ∇ · (a, b) = 0, the equation is

equivalent to the advective form,

ut + a(t, x, y)ux + b(t, x, y)uy = 0. (3.20)

The SLDG scheme for (3.19) is outlined as follows:

Algorithm 3.4. A dimensional splitting SLDG scheme for 2-D transport

equations:

1. Split the equation (3.19) into two 1-D advection problems:

ut + (a(t, x, y)u)x = 0, (3.21)

ut + (b(t, x, y)u)y = 0. (3.22)

2. Locate k+1 GL points in both x− and y−directions in each rectangular

cell as (xig, yjg). See Figure 3.4 (left).

3. Perform the Strang dimension-splitting strategy, for which the numer-

ical update over a time step ∆t is as follows:

(a) Evolve 1-D equation (3.21) at different yjg locations with cor-

responding velocities u(x, yjg, t) for a half time step ∆t/2, see

Figure 3.4(middle).

(b) Evolve 1-D equation (3.22) at different xig locations with cor-

responding velocities v(xig, y, t) for a whole step ∆t, see Figure

3.4(right).

(c) Evolve 1-D equation (3.21) for another half time step ∆t/2 as (a).

Note that the BP filter is applied separately in each direction and the resulting
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3.4. APPLICATIONS TO VLASOV SIMULATIONS

Figure 3.4: Schematic showing the 2-D SLDG scheme via Strang splitting, as de-
scribed in the text. Locate k + 1 GL points in both x− and y− directions (left);
Evolution in x−direction at different yjg (middle). Evolution in y−direction at dif-
ferent xig (right). 4× 4 GL points per cell are used as an example.

scheme can preserve positivity, see [97, 87]. It is difficult to design a numerical

scheme that preserves a constant field in the dimensional splitting framework. It is

our ongoing work to design a non-splitting SLDG scheme that preserves the constant

field when the velocity field is non-divergent.

3.4 Applications to Vlasov Simulations

In this section, we develop a class of high order dimensional splitting SL schemes

coupling the SLDG schemes in Section 3.1 and the SLWENO schemes in Section 3.2

for Vlasov simulations. In particular, we will formulate a hybrid methodology for

solving the VP system in Subsection 3.4.1. Then, the integral deferred correction

(IDC) method is used in correcting the dimensional splitting error, which is discussed

in Subsection 3.4.2.
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3.4. APPLICATIONS TO VLASOV SIMULATIONS

3.4.1 A Hybrid Methodology

For Vlasov simulations, a very popular time stepping strategy is the Strang splitting

[13]. There are many advantages associated with such splitting. For example, the

nonlinearity of the VP system is being decoupled. As a result, the split equations

can be independently evolved, for which a ‘best’ numerical method can be chosen for

each of these independent evolutions. In the proposed hybrid method we adopt the

Strang splitting idea again. In particular, the six-dimensional Vlasov equation (1.1)

is split into two equations, for spatial advection (1.8) and velocity ac/deceleration

(1.9), respectively. The splitting of equation (1.1) can be designed to be second or-

der accurate in time by advecting the equation (1.8) in spatial direction for a half

time step ∆t/2, then evolving equation (1.9) in velocity direction for a full time step

∆t, followed by solving equation (1.8) for a second half time step ∆t/2. The two

advection equations (1.8) and (1.9) are linear. They can be solved by independent

numerical solvers, wisely chosen to be the most suitable ones for individual problem-

s. For many application problems such as tokamak, the spatial domain may have

complicated geometry and general boundary conditions. Depending on the shape

of spatial domain, we propose to apply the SLDG scheme or the Eulerian RKDG

scheme with local time stepping for evolving equation (1.8) based on a structured

rectangular or an unstructured triangular discretization of the spatial domain. On

the other hand, the computational domain for velocity space is simply a cuboid

v ∈ [v1,min, v1,max] × [v2,min, v2,max] × [v3,min, v3,max] with zero boundary conditions.

Because of this, we propose to apply the high order SLWENO scheme to evolve e-

quation (1.9), which is demonstrated to be very robust in resolving the filamentation
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solution structures in Vlasov simulations.

Below, we consider the split Vlasov equation with 1-D in space and 1-D in velocity

(1D1V) to illustrate the idea of the proposed hybrid scheme, i.e.,

ft + vfx = 0 spatial advection, (3.23)

ft + E(t, x)fv = 0 velocity ac/deceleration. (3.24)

The numerical mesh is based on a tensor product of the following discretization

in x and v directions respectively,

Dx : [a, b] =

Nx⋃

i=1

Ii,

where Ii are non-overlapping intervals, not necessarily uniform, the union of which

is the domain [a, b]; and

Dv : −vmax = v0 < v1 < · · · < vNv/2−1 < vNv
= vmax,

where the distribution of grid points are uniform. The solution space for this 1D1V

problem is defined as

V k
Dx,v

= {f(x, v = vj)|Ii
.
= fi,j(x) ∈ P k(Ii), i = 1, · · ·Nx, j = 0, · · · , Nv},

which consists of piecewise polynomials defined on intervals of x, Ii, and at fix loca-

tions of v, vj , ∀i = 1, . . . , Nx and j = 0, . . . , Nv. The evolution procedure per time

44



3.4. APPLICATIONS TO VLASOV SIMULATIONS

step ∆t of the proposed splitting scheme for the VP system is described in the rest

of this subsection. We remark that the time step ∆t is not restricted by the CFL

stability constrain in the proposed framework.

Advection in Spatial Direction

We adopt a RKDG scheme or a SLDG scheme for advection in spatial direction,

denoted as DGx, discussed in details in Section 2.1-2.3 and Section 3.1, respectively.

For each fixed grid point in velocity, say vj , we advect equation (3.23) for half a time

step ∆t/2.

• If the SLDG scheme is adopted, there is no CFL stability time step restriction.

Therefore, the time stepping for ∆t/2 can be performed by calling DGx(∆t/2).

• If the RKDG scheme is applied, then there is time step restriction due to the

linear stability of the algorithm. We denote such the time step restriction as

δt(vj), related to the wave propagation speed vj . In this case, the time stepping

for ∆t/2 can be performed by calling DGx(δt(vj)) for several times, until ∆t/2

is reached. Such time stepping strategy maximizes the size of local time steps

that can be applied in the RKDG scheme for (3.23) per vj, hence optimizes

the time stepping efficiency. Here, by ‘local’, we mean that the size of time

stepping can be chosen based on the wave propagation speed v’s. Much larger

time step δt can be taken for smaller v’s.

Extension of the DG algorithm to multi-dimensional x can be done either with a

rectangular mesh, or with a triangular mesh via a truly multi-dimensional approach,

depending on the shape of the spatial domain Ω. However, a nonlinear limiter may
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be desirable to robustly resolve the filamentation solution structures of solution of

the VP system. We will discuss this issue below.

Advection in Velocity Direction

A conservative high order SLWENO scheme, denoted as SLWENOv(∆t), dis-

cussed in Section 3.2, is applied to advect equation (3.24) for a time step ∆t. As an

SL approach is applied, no time step restriction is involved in this step. Recall that

the domain discretization of (x, v) is the tensor product of intervals (finite element

discretization in x) and point values (finite difference discretization in v). In order

to advect (3.24) in the finite difference framework, we propose to apply one-to-one

linear transformations from/to kth degree polynomials fi,j(x) over the interval Ii,

to/from k+ 1 point values of the solution at Gaussian quadrature nodes on Ii at vj ,

denoted as {fi,ig;j}k+1
ig=1. Below we illustrate the advection procedure (see Figure 3.5).

1. From polynomials to point values. For each spatial interval Ii, transform the

kth degree polynomial fi,j(x) to k + 1 Gaussian point values {fi,ig;j}k+1
ig=1 on Ii

per grid point vj.

2. SLWENO evolution. Apply the SLWENO scheme, discussed in details in Sec-

tion 3.2, to equation (3.24) for xi,ig, ∀i = 1, · · ·Nx and ig = 1, · · · , k + 1.

3. From point values to polynomials. For each spatial interval Ii, transform the k+

1 Gaussian quadrature point values {fi,ig;j}k+1
ig=1 back to a kth degree polynomial

fi,j(x), on Ii per grid point vj .

Extension to multi-dimensional v can be done by dimensional splitting without

introducing splitting errors. We remark that one has the flexibility to combine any
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vj−1

vj

vj+1

xi,1 xi,2 xi,3

Figure 3.5: Advection in velocity direction by the SLWENO scheme at Gaussian
points. Piecewise polynomial space V 2

h (3 Gaussian points per cell) is used as an
example.

order of SLDG/RKDG schemes with any order of SLWENO schemes in the hybrid

setting. In the simulations, we adopt the combination of P 1 with WENO3, P 2

with WENO5 and P 3 with WENO9 to better preserve the order of accuracy of DG

schemes. We decide to use higher order WENO schemes than DG schemes, since DG

schemes have better numerical resolution than WENO schemes based on the same

set of used meshes. Specifically, a DG scheme using V k
h as the approximation space

has k+1 degrees of freedom per cell compared with a finite difference WENO scheme

which only has one point value.

In order to evolve the advection equation (3.24), the electric field E needs to be

computed. One can use a LDG scheme to solve the Poisson’s equation (1.2). If the

partition is uniform and periodic boundary conditions are imposed, an alternative

approach is to preform a fast Fourier transform (FFT). Firstly, we evaluate the
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xi−1,1 xi,1 xi+1,1xi−1,2 xi,2 xi+1,2xi−1,3 xi,3 xi+1,3

Ii−1 Ii Ii+1

Figure 3.6: Evaluation of electric field by FFT at Gaussian quadrature nodes
{xi,1}Nx

i=1. A piecewise polynomial space V 2
h is used as an example.

charge density at all Gaussian points. Then we group the points as {xi,ig}Nx

i=1, ig =

1, 2 · · ·k + 1. Note that in each group, the nodes are evenly distributed, see blue

circles in Figure 3.6. Therefore, we can conveniently apply FFT in each group to

computing the electric field as showed in Figure 3.6. At each time step, FFT will be

performed k + 1 times.

It is well known that filamentation solution structures may be developed in the

VP system. Therefore, nonlinear limiters might be needed for DG schemes in spatial

advection in order to control numerical oscillations. We propose to apply the WENO

limiter [83] before DG evolution as a pre-processing procedure. In our implementa-

tion presented in the next section, we use the TVB limiter with problem dependent

TVB constants M to identify troubled cells. The flow chart of the algorithm is

outlined below:
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Algorithm 3.5. A hybrid method for the VP system:

1. Evolve the solution in spatial directions by a SLDG scheme (or

a RKDG scheme with local time stepping) for ∆t/2 by calling

DGx(∆t/2).

2. Solve E at all Gaussian points by FFT (or a LDG scheme) from the

Poisson’s equation.

3. Evolve the solution in velocity directions by SLWENO for ∆t by calling

SLWENOv(∆t).

4. Apply the WENO limiter as a pre-processing procedure for DG evolu-

tion.

5. Evolve the solution as in step 1 for ∆t/2.

Note that step 1 and step 5 can be merged as one time step in order to save compu-

tational cost.

In the context of solving the Vlasov equations, the WENO limiter would be useful

when the initial data contain discontinuities. Even with smooth initial data, it is

well-known that filamentation solution structures might be developed after some

time. Such filamentation solution structures will be under-resolved by a given set

of meshes. Numerical (rather than physical) oscillations might appear due to the

Gibbs phenomenon. In the simulations, the WENO limiter is adopted to control

such oscillations and enhance the numerical stability. Notice that one can not hope

for accuracy for an under-resolved numerical solution.
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Finally, we remark that the proposed hybrid method is mass conservative, since

the RKDG, SLDG and SLWENO schemes are all mass conservative. The mass

conservation of a DG scheme can be checked by choosing the test function v = 1 in

the DG weak formulation (2.3), (3.2), (3.7), and (3.9). The mass conservation of a

SLWENO scheme is due to the fact that the equation (3.17) is in a flux difference

form. Readers are referred to [84, 85, 86] for detailed analysis.

Proposition 3.1 The proposed hybrid method conserves the total mass subject to

periodic boundary conditions.

Proof: It is sufficient to prove that the hybrid method is mass conservative without a

WENO limiter. The WENO limiter preserves the cell average, and hence the overall

mass. We denote f̄n
i,j as the cell average of the numerical solution fi,j over interval Ii

at velocity vj at time level tn. Denote f
n,(1)
i,j as the numerical solution after advection
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of Step 1. Denote f
n,(2)
i,j as the numerical solution after advection in Step 3.

∑

j

∑

i

f̄n+1
i,j ∆xi∆v

Step 5
=

∑

j

∑

i

f̄
n,(2)
i,j ∆xi∆v (mass conservation of DG)

=
∑

j

∑

i

∆xi

∑

ig

f
n,(2)
i,ig;jwig∆v

=
∑

i

∆xi

∑

ig

wig

∑

j

f
n,(2)
i,ig;j∆v

Step 3
=

∑

i

∆xi

∑

ig

wig

∑

j

f
n,(1)
i,ig;j∆v (mass conservation of SLWENO)

=
∑

j

∑

i

∆xi

∑

ig

f
n,(1)
i,ig;jwig∆v

=
∑

j

∑

i

f̄
n,(1)
i,j ∆xi∆v

Step 1
=

∑

j

∑

i

f̄n
i,j∆xi∆v. (mass conservation of DG)

Numerical Results

Below, several numerical examples are presented to illustrate high order accuracy

and reliability of the proposed hybrid method. We test linear advection and rigid

body rotation problems, and the VP system. In the numerical experiments, two types

of hybrid methods are considered. In particular, we first perform the dimensional

splitting, then (1) a SLDG scheme or (2) a RKDG scheme with local time stepping

for advection in x−direction are coupled with a SLWENO scheme for advection in

y− or v−direction.
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Example 3.6. Consider a 2-D linear advection equation:

ut + ux + uy = 0 (3.25)

with an initial condition u(t = 0, x, y) = sin(x + y) and periodic boundary condi-

tions. The errors and numerical orders of accuracy of the proposed hybrid methods

are shown in Table 3.1 for the SLDG schemes combined with the SLWENO schemes,

and in Table 4.2 for the RKDG schemes combined with the SLWENO schemes. S-

ince the x−shifting and y−shifting operators commute, there is no splitting error in

time and the spatial error will dominate. We remark that the order of used WENO

reconstruction in y−direction is higher than that of a DG scheme in x−direction.

Such choice of combination makes the DG error dominant. Expected orders of ac-

curacy from DG schemes are observed in Table 3.1 and 4.2. Comparable numerical

results are observed for coupling SLDG schemes or RKDG schemes in the hybrid

framework.

Table 3.1: Linear advection. Hybrid methods with SLDG schemes and SLWENO
schemes. L2 errors and numerical orders of accuracy on uniform meshes with Nx×Ny

cells. TVB constant M= 1.0. CFL=2.2. T=10.

P 1+WENO3 P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order L2 error order
40×40 5.58E-2 – 8.67E-5 – 6.63E-7 –
80×80 1.87E-2 1.57 1.04E-5 3.06 4.05E-8 4.04
120×120 9.03E-3 1.79 3.12E-6 2.97 8.73E-9 3.78
160×160 4.96E-3 2.08 1.41E-6 2.75 2.77E-9 3.99
200×200 2.88E-3 2.44 6.81E-7 3.27 1.17E-9 3.87
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Table 3.2: Linear advection. Hybrid methods with RKDG schemes and SLWENO
schemes. L2 errors and numerical orders of accuracy on uniform meshes with Nx×Ny

cells. TVB constant M= 1.0. CFL=2.2. T=10.

P 1+WENO3 P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order L2 error order
40×40 5.04E-2 – 1.34E-4 – 8.10E-7 –
80×80 1.48E-2 1.77 1.36E-5 3.30 5.07E-8 4.00
120×120 7.03E-3 1.83 3.89E-6 3.09 1.00E-8 4.00
160×160 3.95E-3 2.00 1.62E-6 3.04 3.17E-9 4.00
200×200 2.40E-3 2.24 8.25E-7 3.03 1.30E-9 4.00

Example 3.7. Consider the solid body rotation problem:

ut − yux + xuy = 0, (x, y) ∈ [−2π, 2π]2. (3.26)

We first consider a smooth initial condition

u(t = 0, x, y) =





cos6( r
2
) r < π,

0 otherwise,
(3.27)

where r =
√

0.8(x− 1)2 + 1.2y2. This is to test orders of convergence of the hybrid

schemes. Again, we report the L2 error and the orders of accuracy for two hybrid

methods: SLDG schemes combined with SLWENO schemes in Table 3.3 and Table

3.4, RKDG schemes combined with SLWENO schemes in Table 3.5 and Table 3.6

for CFL= 0.3 and CFL= 6.2, respectively. The spatial error is observed to be the

dominant error when CFL = 0.3, see Table 3.3 and 3.5. The second order splitting

error in time becomes the dominant error when a relatively large CFL number, i.e.,

CFL=6.2, is used, see Table 3.4 and 3.6. We remark that there is a certain range of
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Table 3.3: Solid body rotation. Hybrid methods with SLDG schemes and SLWENO
schemes. L2 errors and numerical orders of accuracy on uniform meshes with Nx×Ny

cells. TVB constant M= 1.0. CFL=0.3. T=π/2.

P 1+WENO3 P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order L2 error order
10×30 2.57E-01 – 6.09E-02 – 5.36E-03 –
20×60 7.33E-02 1.81 6.63E-03 3.20 3.41E-04 3.97
30×90 3.28E-02 1.98 1.90E-03 3.09 6.44E-05 4.11
40×120 1.88E-02 1.94 7.92E-04 3.03 2.01E-05 4.04
50×150 1.24E-02 1.88 4.15E-04 2.89 8.35E-06 3.95

Table 3.4: Solid body rotation. Hybrid methods with SLDG schemes and SLWENO
schemes. L2 errors and numerical orders of accuracy on uniform meshes with Nx×Ny

cells. TVB constant M= 1.0. CFL=6.2. T=π/2

P 1+WENO3 P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order L2 error order
10×30 1.87E-01 – 5.37E-02 – 2.67E-02 –
20×60 5.57E-02 1.75 8.03E-03 2.74 6.46E-03 2.05
30×90 2.53E-02 1.94 3.12E-03 2.33 2.87E-03 2.01
40×120 1.46E-02 1.92 1.66E-03 2.20 1.61E-03 2.00
50×150 9.71E-03 1.82 1.03E-03 2.12 1.03E-03 2.00

CFL numbers above which the splitting error in time is the dominant error. Such

range is problem and scheme dependent. An attempt to increase the temporal order

accuracy will be discussed in Subsection 3.4.2. Note that we set 3Nx = Ny in order

to observe a clean order of convergence from DG schemes.

We then consider an initial condition which includes a slotted disk, a cone as

well as a smooth hump, similar to the one used in [66] to test the proposed schemes’

ability in resolving complicated structures. In Figure 3.7 we plot the initial condition
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Table 3.5: Solid body rotation. Hybrid methods with RKDG schemes and SLWENO
schemes. L2 errors and numerical orders of accuracy on uniform meshes with Nx×Ny

cells. TVB constant M= 1.0. CFL=0.3. T=π/2.

P 1+WENO3 P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order L2 error order
10×30 2.71E-01 – 6.75E-02 – 6.85E-03 –
20×60 7.87E-02 1.78 7.38E-03 3.19 6.15E-04 3.48
30×90 3.53E-02 1.98 2.14E-03 3.06 1.21E-04 4.01
40×120 2.00E-02 1.98 8.96E-04 3.02 3.83E-05 4.00
50×150 1.29E-02 1.95 4.66E-04 2.93 1.59E-05 3.94

Table 3.6: Solid body rotation. Hybrid methods with RKDG schemes and SLWENO
schemes. L2 errors and numerical orders of accuracy on uniform meshes with Nx×Ny

cells. TVB constant M= 1.0. CFL= 6.2. T=π/2

P 1+WENO3 P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order L2 error order
10×30 2.34E-01 – 6.57E-02 – 2.49E-02 –
20×60 6.92E-02 1.76 9.04E-03 2.86 6.15E-03 2.01
30×90 3.10E-02 1.98 3.36E-03 2.44 2.72E-03 2.01
40×120 1.76E-02 1.96 1.74E-03 2.29 1.53E-03 2.00
50×150 1.14E-02 1.95 1.06E-03 2.20 9.77E-04 2.00
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Figure 3.7: Initial condition. Profile (left) and contour (right).

in mesh and contour. The numerical solution at T= 12π is reported in Figure 3.8,

which returns to the initial state after six full evolutions. Non-oscillatory numerical

capturing of discontinuities is observed. It is clear that higher order methods resolve

the solution structure better. As the performance of the hybrid schemes using RKDG

schemes in x−direction is very similar to those in Figure 3.8, we omit them for brevity.

Below, we further examine the performance of the proposed hybrid methods when

applied to the VP systems. Periodic boundary conditions are imposed in x−direction,

while zero boundary conditions are imposed in v−direction. We only present the

numerical results of the hybrid methods with SLDG schemes in x−direction and

SLWENO schemes in v−direction, as the performance of the scheme using RKDG

schemes for spatial advection is very similar. In realistic high-dimensional problems

with complicated spatial domains, the RKDG schemes will offer more flexibility than

the SLDG counterparts.

Throughout this section, we consider solving the VP system with the following
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Figure 3.8: Solid body rotation with the initial condition in Figure 3.7. Uniform
meshes with Nx × Ny = 100 × 100. TVB constant M= 1.0. CFL=2.2. T=12π.
Hybrid schemes: SLDG schemes combined with SLWENO schemes.

four initial conditions.

• Landau damping:

f(t = 0, x, v) =
1√
2π

(1 + α cos(kx)) exp

(
−v2

2

)
, (3.28)

where α = 0.01 for the weak case and α = 0.5 for the strong case.
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• Two stream instability I:

f(t = 0, x, v) (3.29)

=
2

7
√
2π

(1 + 5v2) (1 + α ((cos(2kx) + cos(3kx)) /1.2 + cos(kx))) exp

(
−v2

2

)
,

where α = 0.01, k = 0.5.

• Two stream instability II:

f(t = 0, x, v) =
1√
2π

(1 + α cos(kx))v2 exp

(
−v2

2

)
, (3.30)

where α = 0.05, k = 0.5.

• Two stream instability III:

f(t = 0, x, v) (3.31)

=
1

2vth
√
2π

[
exp

(
−(v − u)2

2v2th

)
+ exp

(
−(v + u)2

2v2th

)] (
1 + α cos(kx)

)
.

Example 3.8. We first present the performance of the proposed hybrid scheme

for two stream instability I (3.29). In this example, we will demonstrate (1) the

high order spatial accuracy and the second order temporal accuracy of the proposed

scheme; (2) the performance of the proposed hybrid method in resolving solutions

and in preserving theoretically conserved physical norms; (3) the robustness of the

SLWENO scheme for velocities compared with a spectral method and a pure SLDG

scheme. The length of the domain in the x−direction is L = 2π
k
.
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Firstly, we want to test spatial and temporal accuracy of the hybrid methods.

To minimize the error from truncating the domain in v−direction, we let vmax = 2π.

We compute a reference numerical solution with a very fine mesh. We remark that

the overall numerical error consists of two parts: spatial and temporal errors. To

test spatial accuracy of DG in x−direction, we make the mesh in v−direction to

be fine enough and time step to be sufficiently small, so that spatial error domi-

nates. We report the L2 error and the orders of accuracy for two hybrid methods:

the SLDG schemes combined with the SLWENO schemes in Table 3.7 and RKDG

schemes combined with SLWENO schemes in Table 3.8. Expected k + 1 orders of

spatial accuracy are observed. To test temporal accuracy, there is a lower bound in

the time step size that we need to respect. When the time step is too small, spatial

error becomes dominant. In this case, we let ∆t = ∆x to test the temporal accuracy.

In Table 3.9 we report the L2 error and the orders of accuracy for two hybrid meth-

ods: the SLDG/RKDG P 3 combined with the SLWENO9. Expected second order

temporal accuracy due to the Strang splitting is observed. Note that the errors from

two hybrid methods are comparable, owing to the fact that splitting error dominates

for using a large time step.

Then we test the reliability of the hybrid methods after a long time integration

with vmax = 5 and ∆t = ∆x. In Figure 3.9, we show the numerical results of

hybrid methods at T= 53. The filamentation solution structures are well resolved

by the hybrid methods. Time evolution of discrete L1 norm, L2 norm, energy and

entropy by hybrid methods with different orders are reported in Figure 3.10. As

expected, the physical quantities, which are conserved in the continuous VP system,
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are better preserved by a higher order hybrid method. In Figures 3.11 we show 3-D

plots of the distribution function f at different instances of time. Good resolutions

can be observed without oscillations. Our results are comparable to those that have

been reported by Filbet and Sonnendrücker in [38] where the performance of several

numerical schemes are compared. Since a DG method is used in x−direction, a non-

uniform meshes is allowed. Figure 3.12 presents the mesh and the numerical solution

of a hybird method (a RKDG scheme with P 3 in x−direction and a SLWENO9

scheme in v−direction) at T= 53. Here we use a non-uniform mesh from 20%

random perturbation of the uniform mesh in x−direction with Nx ×Nv = 64× 160.

Due to the non-uniform distribution of the mesh, we use a LDG scheme instead of

FFT to solve the Poisson’s equation.

An alternative way of advection for the velocity ac/deceleration is using a spectral

method. The numerical results of a scheme coupling a SLDG scheme in x−direction

and a spectral method in v−direction are presented in Figure 3.13 at different times.

When the structure of the solution is simple (see the left panel in Figure 3.13), the

spectral method performs well. However, as the numerical mesh no longer supports

the filamentation solution structures which are developed over a long time period,

serious spurious oscillations are observed (see the right panel of Figure 3.13).

Finally, we use this example to draw a comparison between the method using

in both spatial and velocity directions and the proposed hybrid method. We set

Nx × Nv = 64 × 128 for a pure SLDG scheme (P 3 polynomial in both x− and

v−directions) and Nx × Nv = 64 × 512 for the hybrid method (a SLDG scheme

with P 3 in x−direction and SLWENO9 scheme in v−direction) for a comparable
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Table 3.7: Two stream instability I. Hybrid method with SL DG and SL WENO.
L2 errors and numerical orders of accuracy on uniform meshes with Nx × Ny cells.
∆t = 0.005∆x. T=0.5. The reference solution is computed with Nx×Ny = 192×630.

P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order

16×210 1.49E-04 – 1.05E-05 –
32×210 1.85E-05 3.01 6.55E-07 4.00
48×210 5.50E-06 3.00 1.29E-07 4.00
64×210 2.31E-06 3.02 4.17E-08 3.94

Table 3.8: Two stream instability I. Hybrid methods with RKDG schemes and
SLWENO schemes. L2 errors and numerical orders of accuracy on uniform meshes
with Nx ×Ny cells. ∆t = 0.005∆x. T=0.5. The reference solution is computed with
Nx ×Ny = 192× 630

P 2+WENO5 P 3+WENO9
mesh L2 error order L2 error order

16×210 1.54E-04 – 1.06E-05 –
32×210 1.92E-05 3.01 6.64E-07 4.00
48×210 5.69E-06 2.99 1.31E-07 4.00
64×210 2.39E-06 3.02 4.22E-08 3.94

resolution. Figure 3.14 gives 3-D plots of the numerical solution in the region where

filamentation structures are developed. Milder numerical sawtooth-shaped oscilla-

tions are observed for the hybrid method than that for the pure SLDG scheme in

both x− and v−directions, when the numerical solution is under-resolved.

Example 3.9. Consider weak Landau damping (3.28) with α = 0.01. When the

perturbation parameter α is small enough, the VP system can be approximated by

linearization around the Maxwellian equilibrium f 0(v) = 1√
2π
e−

v2

2 . The analytical

damping rate of the electric field can be derived accordingly [41]. We test the hybrid
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Table 3.9: Two stream instability I. Hybrid methods with the SLDG/RKDG P 3

schemes and the SLWENO9 scheme. L2 errors and numerical orders of accuracy on
uniform meshes with Nx × Ny cells. The reference is computed with Nx × Nv =
630× 630. ∆t = ∆x. T=1.

SLDG P 3+SLWENO9 RKDG P 3+SLWNEO9
mesh L2 error order L2 error order
70×70 3.23E-04 – 3.23E-04 –
90×90 1.93E-04 2.05 1.93E-04 2.05
126×126 9.59E-05 2.08 9.59E-05 2.08
210×210 3.20E-05 2.15 3.20E-05 2.15

scheme with different k’s and compare the numerical damping rates with theoretical

values. In the simulations, we set Nx = 64, Nv = 160, vmax = 5, and ∆t = ∆x.

We plot the evolution of the electric field in L2 norm in Figure 3.15 for k = 0.5,

k = 0.4 and k = 0.3. The correct decay rates of the electric field are observed,

benchmarked with all the theoretical values (solid black lines in the figure). The

time evolution of discrete L1 norm, L2 norm, energy and entropy by hybrid methods

with different orders are reported in Figure 3.16. For brevity, we only report the

result when k = 0.5. In this case, the total mass is observed to be exactly conserved.

Other physical quantities are well preserved.

Example 3.10. Consider strong Landau damping (3.28) with α = 0.5 and k = 0.5.

In Figure 3.17, the evolution of L2 norms of the electric field is provided. The linear

decay rate of different orders of hybrid methods are all approximately γ1 = −0.2812,

which is identical to the value computed by Cheng and Knorr [13]. It is a little

smaller than the value of −0.292 reported by Rossmanith and Seal in [97] and −0.287

reported by Heath et. al in [53]. We also compute the growth rates of hybrid
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methods, which are approximately γ2 = 0.0813 of the SLDG P 3 scheme combined

with the SLWENO9 schemes, γ2 = 0.0778 of the SLDG P 2 scheme combined with

the SLWENO5 scheme and γ2 = 0.0770 of the SLDG P 1 scheme combined with the

SLWENO3 scheme. They are all consistent with the value of 0.0815 computed by

Rossmanith and Seal in [97] and 0.0746 by Heath et al. in [53]. Numerical solutions

of the hybrid methods with different orders at T=30 are plotted in Figure 3.18.

Better resolutions are observed with higher order methods. Figure 3.19 gives the

numerical solution of strong Landau damping at different instances of time using

hybrid methods of the SLDG P 3 scheme combined with the SLWENO9 scheme, the

results are comparable to what are shown in [84]. The time evolution of discrete L1

norms, L2 norm, energy and entropy by hybrid methods with different orders are

reported in Figure 3.20. It is clear that higher order hybrid methods better preserve

physical quantities than lower order methods, as expected. We remark that because

the proposed hybrid methods are not positivity preserving, L1 norms of numerical

solutions are not exactly preserved, although the methods are mass conservative.

Example 3.11. Consider the two stream instability III. The background ion dis-

tribution function is fixed, uniform, and chosen so that the total net charge density

for the system is zero. We first let α = 0.001, u = 2.4, vth = 1, and k = 0.2. The

linear growth rate of electric field after some time is 0.2258, which can be derived

by the same procedure as the Landau damping. In Figure 3.21, we plot the evo-

lution of the electric field in the L2 norm. The correct growth rates of the electric

field are observed, benchmarked with the theoretical value. We then let α = 0.05,

u = 0.99, vth = 0.3 and k = 2
13
. This case is studied in [86, 87] by SLWENO schemes
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and SLDG schemes, respectively. In Figures 3.22, we report the numerical results

approximating the distribution solution f . Time evolution of discrete L1 norm, L2

norm, energy and entropy by hybrid methods with different orders are reported in

Figure 3.23. Again, the higher order methods in general do a better job in resolving

filamentation structures and preserving the physical quantities than low order ones.

Finally, we remark that with strong perturbation, nonlinear effects of higher modes

become dominant. The growth rate of the electric field does not agree with the the-

oretical value obtained in the linear analysis. Thus we omit to present the evolution

of the electric field.
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Figure 3.9: Two stream instability I. TVB constant M= 1.0. T=53. Hybrid scheme:
the SLDG scheme combined with SLWENO scheme. Nx × Nv = 64 × 160 (left),
Nx ×Nv = 128× 320 (right).
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Figure 3.10: Two stream instability I. Time evolution of the relative deviations
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entropy (lower right). TVB constant M= 1.0. Hybrid scheme: the RKDG scheme
combined with the SLWENO scheme.
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Figure 3.11: Two stream instability I. TVB constant M= 1.0. Nx ×Nv = 128× 320.
3-D contour plot of distribution function. T=20, 30, 40, 60, 80, and 100.
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Figure 3.12: Two stream instability I. A non-uniform meshes with 20% random
perturbation in x−direction of a uniform mesh Nx×Nv = 64×160. T = 53. Hybrid
scheme: the RKDG scheme P 3 combined with the SLWENO9 scheme.

Figure 3.13: Two stream instability I. A spectral method is adopted for velocity
ac/deceleration. When T= 15, the structure of solution is simple, the performance
of the spectral method is acceptable (left); when T=53, the filamentation structures
are generated, serious oscillations appear (right).
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Pure SL DG P3 Hybrid method SL DG P3 + SLWENO9

Figure 3.14: Two stream instability I. Comparison between the pure SLDG scheme
and the hybrid method. T= 53. The pure SLDG P 3 scheme (left), the hybrid
method combined SLDG P 3 scheme and SLWENO9 scheme (right). Zoomed-in
region to show more details. Much fewer artificial oscillations are observed of the
hybrid method.
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Figure 3.15: Weak Landau damping. Time evolution of the electric field in the L2

norm. k = 0.5 (upper left), k = 0.4 (upper right), and k = 0.3 (lower)
.
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Figure 3.16: Weak Landau damping. Time evolution of the relative deviations of
discrete L1 norms (upper left), L2 norms, energy (lower left), and entropy (lower
right). TVB constant M= 1.0. Hybrid schemes: SLDG schemes combined with
SLWENO schemes.
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Figure 3.17: Strong Landau damping. Time evolution of electric field in L2 norm.
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Figure 3.18: Strong Landau damping. TVB constant M= 1.0. T=30. Hybrid
scheme: the SLDG scheme combined with the SLWENO scheme. Nx×Nv = 64×160
(left), Nx ×Nv = 128× 320 (right).
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Figure 3.19: Strong Landau damping. TVB constant M= 1.0. Time evolution of
numerical solutions at T=5, 10, 15, 20, 25, 30, 35, 40, and 50. Hybrid scheme of the
SLDG P 3 scheme combined with the SLWENO9 scheme. Nx ×Nv = 128× 320.
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Figure 3.20: Strong Landau damping. Time evolution of the relative deviations of
discrete L1 norms (upper left), L2 norms, energy (lower left), and entropy (lower
right). TVB constant M= 1.0. Hybrid scheme: the SLDG scheme combined with
the SLWENO scheme.
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Figure 3.21: Two stream instability III. Time evolution of the electric field in the L2

norm. α = 0.001, u = 2.4, vth = 1, and k = 0.2.
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Figure 3.22: Two stream instability III. TVB constant M= 3.0. T=70. Hybrid
scheme: the SLDG schemes combined with the SLWENO schemes. Nx × Nv =
128× 320 (left), Nx ×Nv = 256× 640 (right).
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Figure 3.23: Two stream instability III. Time evolution of the relative deviations
of discrete L1 norms (upper left), L2 norms, energy norms (lower left), and entropy
(lower right). TVB constant M= 3.0. Hybrid scheme: the SLDG schemes combined
with SLWENO schemes.
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3.4.2 Integral Deferred Correction in Correcting Splitting

Error

Despite great efficiency and convenience of the dimensional splitting approach, the

method is subject to low order splitting error in time (O(∆t2)) compared with the

high order spatial accuracy. It is therefore important to overcome the issue, in order

to have numerical algorithms that achieve high order accuracy in both space and

time. In this subsection, we consider adopting the idea of IDC to correct lower order

dimensional splitting error. The IDC methods are considered one-step, multi-stage

integrators for solving initial value problems (IVPs). They are motivated by the de-

fect/deferred correction (DC) methods [107, 40, 80], and more recently the spectral

deferred correction (SDC) methods [36]. By construction, the IDC framework can

systematically extend simple low order time integrators to high order ones by cor-

recting provisional solutions. The DC/SDC/IDC methods and their variants have

been applied to many application areas such as chemical rate equations, reactive flow

[64, 9], hyperbolic equations [113], and parabolic equations [19]. Additionally, recen-

t developments in IDC algorithms have opened up new possibilities for increased

computational speed via parallelization [20].

Below, we investigate applying the IDC framework to correct the dimensional

splitting error in solving the VP system, and guiding center models with plasma ap-

plications, as well as in simulating incompressible flows. We choose the dimensional

splitting SLWENO scheme (3.14)-(3.15) reviewed in Section 3.2 as the base solver

in the prediction and correction steps of IDC, but point out that SL finite difference
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schemes with different reconstruction procedures such as those in [105, 77, 12] can

also be used. In the IDC framework, the low order temporal accuracy from dimen-

sional splitting is increased by iteratively approximating error functions via solving

error equations. In particular, the temporal error accuracy is lifted by r in each

correction loop, where r = 1, 2 for coupling the first order splitting and the Strang

splitting, respectively. Our proposed SL scheme coupled with the IDC method en-

joys the simplicity of the dimensional splitting algorithm, maintains the high order

spatial accuracy, and can be designed to be of high order in time. However, the

IDC methods with correction steps will render some CFL time step restrictions. We

perform linear stability analysis via the classic Fourier approach and provide upper

bounds of the CFL numbers for the proposed schemes. The CFL time step restriction

is comparable to that for Eulerian methods using RK time discretization, leading to

the computational cost at a similar scale.

We would like to remark that prior to the proposed IDC method in correcting

the dimensional splitting error, several constructions of high order splitting methods

have been developed. The methods proposed in [118, 47] are in the spirit of com-

position methods, requiring backward steppings (negative time steps). The number

of intermediate stages, hence the computational cost, increases exponentially with

the order of the splitting method. A fourth order splitting in [118] is applied to the

VP system in [97]. Higher order splitting methods that do not require backward

steppings by using complex coefficients are proposed in [49]. The number of inter-

mediate stages scales similarly to [118]. A fourth order splitting method for a linear

Vlasov equation was presented in [102]. However, the generalization of this fourth
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order method to a nonlinear problem is not straightforward.

Overview of IDC Methods

We provide a brief review of IDC methods [22], designed for scalar/system of

IVPs in the following form,

y′(t) = g(t, y), t ∈ [0, T ],

y(0) = y0.
(3.32)

The time domain, [0, T ], is discretized into intervals,

0 = t1 < t2 < · · · < tn < · · · < tN = T,

and each interval, Jn = [tn, tn+1], is further discretized into sub-intervals,

tn = tn0 < tn1 < · · · < tnm < · · · < tnM = tn+1. (3.33)

The IDC method on each time interval [tn, tn+1] is described below. We drop the

superscript n, e.g., τ0
.
= tn0 in (3.33), with the understanding that the IDC method is

described for one time interval. We also refer to τm
.
= tnm as grid points or quadrature

nodes, whose index m runs from 0 to M . In the IDC method, the size of sub-intervals

are uniform. Let ∆τ
.
= tn+1−tn

M
, then τm = tn +m∆τ , m = 0, . . . ,M . The procedure

of an IDC method with M+1 uniformly distributed quadrature nodes as in equation

(3.33) and with K correction loops denoted as IDC(M + 1)J(K) is the following:

1. (prediction step) Use a low order numerical method to obtain a numerical
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solution, ~η[0] = (η
[0]
0 , . . . , η

[0]
m , . . . , η

[0]
M ), which is a low order approximation to

the exact solution at quadrature points. For example, applying a first order

forward Euler method to (3.32) gives

η
[0]
m+1 = η[0]m +∆τg(t, η[0]m ), m = 0, . . . ,M − 1.

2. (correction loops) Use the error function to improve the accuracy of the scheme

at each iteration.

For k = 1, . . . , K (K is the number of correction steps)

(a) Denote the error function from the previous step as

e(k−1)(t) = y(t)− η(k−1)(t),

where y(t) is the exact solution and η(k−1)(t) is an M th degree polynomial

interpolating ~η[k−1].

(b) Denote the residual function as

ǫ(k−1)(t) = (η(k−1))′(t)− g(t, η(k−1)(t)).

(c) Compute the numerical error vector, ~δ[k] = (δ
[k]
0 , . . . , δ

[k]
m , . . . , δ

[k]
M ), using

a low order numerical method to discretize the following error equation
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with a zero initial condition,

(
e(k−1) +

ˆ t

0

ǫ(k−1)(τ) dτ

)′

(t) = g(t, η(k−1)(t) + e(k−1)(t))− g(t, η(k−1)(t)).

(3.34)

For example, applying a first order forward Euler scheme to equation

(3.34) gives

δ
[k]
m+1 = δ[k]m +∆τ(g(τm, η

[k−1]
m + δ[k]m )− g(τm, η

[k−1]
m )) +

M∑

ℓ=0

αm,ℓ g(τℓ, η
[k−1]
ℓ )

+η[k−1]
m − η

[k−1]
m+1 , m = 0, . . . ,M − 1.

(3.35)

To get equation (3.35) from the discretization of (3.34),
´ τm+1

τm
ǫ(k−1)(t) dt

is approximated by

η
[k−1]
m+1 − η[k−1]

m −
M∑

ℓ=0

αm,ℓ g(τℓ, η
[k−1]
ℓ ),

where
∑M

j=0 αm,ℓ g(τℓ, η
[k−1]
ℓ ) approximates

´ τm+1

τm
g(t, η(k−1)(t))dt by quadra-

ture formulas. We note that such a way of evolving the error function in

the IDC algorithm is advantageous compared with that in the traditional

DC algorithm. It introduces more stability by using the integral form,

rather than the differentiation form, of the residual.

(d) Update the numerical solution ~η[k] = ~η[k−1] + ~δ[k].

Remark 3.12. (About notations.) In our description of IDC, we let English letters
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ym, e
(k)
m denote the exact solutions and exact error functions, and Greek letters η

[k]
m ,

δ
[k]
m denote the numerical approximations to the exact solutions and error functions.

We use subscript m to denote the location t = τm. The superscripts k with round

brackets ((k)) and square brackets ([k]) are for functions and vectors (or their com-

ponents) respectively at the prediction (k = 0) and correction loops (k = 1, . . . , K).

We let ~· denote the vector on IDC quadrature nodes. For example, ~y = (y0, . . . , yM).

Remark 3.13. (About the distribution of the quadrature nodes.) The IDC meth-

ods reviewed above adopt the uniformly distributed quadrature nodes to compute the

residual. In [22], it is proved under some mild assumption, that the order accuracy of

an IDC method can be increased by r order when an rth order RK integrator is used

to solve the error equation in each correction loop. The numerical results reported in

[21] show that such high order accuracy lifting property does not always hold for an

SDC method, which is constructed with Gaussian quadrature nodes.

Remark 3.14. (About computational cost and storage requirement.) In terms of

the order of accuracy, per ∆τ (a subinterval size in the IDC method), numerical

solutions η
[K]
m are (K +1)th order approximations to the exact solution at quadrature

nodes ym for m = 0, . . . ,M ; in terms of computational cost, per ∆τ , there are K+1

function evaluations for a (K + 1)th order IDC(M + 1)J(K) method. In this sense,

the IDC method is considered to be efficient with relatively low computational cost

among RK methods with the same order of accuracy. We remark that an IDC method

can be considered as a one-step RK method with its Butcher table constructed in [21].

At the same time, an IDC(M + 1)J(K) method requires storage space for numerical

solutions at M + 1 quadrature nodes.
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IDC methods for the VP system

The dimensional splitting SL methods described in Section 3.1 (SLDG) and Sec-

tion 3.2 (SLWENO) are very high order accurate in space, but only low order in time.

Therefore, we use the IDC framework to increase the temporal order of the dimen-

sional splitting method. We will only consider using first order splitting for brevity,

but also comment on the use of Strang splitting. Consider the VP system with only

1-D in space and 1-D in velocity for simplicity of notation. Here, the SLWENO

scheme is used as a base scheme. Note that the IDC framework also applies to the

SLDG scheme.

1. (prediction step) Use the dimensional splitting SLWENO method described in

Section 3.2 in the prediction step of the IDC framework. More specifically,

predict solution ~η[0] = (η
[0]
0 , . . . , η

[0]
M ) at time step subintervals (3.33) for each

spatial and velocity grid point, say (xi, vj), ∀i = 1, . . . , Nx, j = 0, . . . , Nv.

2. (correction loops) Use the error function to reduce the dimensional splitting

error at each iteration. Our correction procedure is based on a fixed location,

say (xi, vj).

For k = 1, . . . , K (K is the number of correction steps)

(a) The error function is defined as e(k−1)(t, xi, vj) = f(t, xi, vj)−η(k−1)(t, xi, vj),

where f(t, xi, vj) is the exact solution and η(k−1)(t, xi, vj) is the polyno-

mial interpolating ~η[k−1] = (η
[k−1]
0 (xi, vj), . . . , η

[k−1]
M (xi, vj)) at quadrature

points (3.33) over a time interval [tn, tn+1].
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(b) The residual function is defined as

ǫ(t, x, v) = −(ηt + v · ηx + Eη(x) · ηv), (3.36)

where Eη is the electrostatic field induced by the numerical distribution

function η(t, x, v).

(c) The error equation about the error function is obtained by adding the

residual equation (3.36) to the Vlasov equation (1.1),

et + v · ex + (Eη + Ee) · ev + Ee · ηv = ǫ, (3.37)

where Ee is the electrostatic field induced by the error function e(t, x, v).

(d) Evolve the error equation (3.37) with zero initial condition by the same

dimensional splitting SLWENO method for spatial advection and velocity

ac/deceleration as that for the Vlasov equation. Specifically, we split the

error equation (3.37) into three parts,

et + v · ex = 0 (spatial advection) (3.38)

et + Eη+e · ev = 0 (velocity ac/deceleration) (3.39)

et + Ee · ηv = ǫ (source term). (3.40)

To evolve the error equation (3.37) from τm to τm+1 in a splitting fashion,

we first evolve the solution δ
[k]
m by approximating equation (3.38) with the

SLWENO scheme. The solution after the evolution is denoted by δ
[k]
m,∗.
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After that, we solve the electrostatic field Eη
[k−1]
m +δ

[k]
m,∗ induced by η

[k−1]
m +

δ
[k]
m,∗ from the Poisson’s equation, then get Eδ

[k]
m,∗ = Eη

[k−1]
m +δ

[k]
m,∗ − Eη

[k−1]
m .

We then evolve δ
[k]
m,∗ by approximating equation (3.39) again with the

SLWENO scheme. The numerical solution is denoted by δ
[k]
m,∗∗. Finally

we solve equation (3.40), but using the integral form of the residual in an

SDC/IDC fashion,

(
e(t, x, v)−

ˆ t

tn

ǫ(τ, x, v) dτ

)′

(t) = −Ee · ηv. (3.41)

Note that Ee ·ηv, as well as the terms v ·ηx and Eη ·ηv in equation (3.36) for

the residual ǫ, are approximated in a flux difference form to ensure mass

conservation. In the simulation, we use a fifth order WENO procedure

to reconstruct all the numerical fluxes. Similar to (3.35), we approximate

(3.41) at (xi, vj) by

δ
[k]
m+1 = δ[k]m,∗∗ −

∆τ

∆v
Eδ

[k]
m,∗(

̂
η
[k−1]
m i,j+ 1

2
− ̂
η
[k−1]
m i,j− 1

2
)−

M∑

ℓ=0

αm,ℓ g(η
[k−1]
ℓ )

+η
[k−1]
m+1 − η[k−1]

m , m = 0, . . . ,M − 1,

(3.42)

with

g(η
[k−1]
ℓ ) = v

̂
η
[k−1]
ℓ i+ 1

2
,j −

̂
η
[k−1]
ℓ i− 1

2
,j

∆x
+ Eη

[k−1]
ℓ

̂
η
[k−1]
ℓ i,j+ 1

2
− ̂
η
[k−1]
ℓ i,j− 1

2

∆v
,

(3.43)

where we omit the (i, j) dependence when there is no confusion.
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(e) Update the solution by the approximate error function computed from

the correction step,

~η[k](xi, vj) = ~η[k−1](xi, vj) + ~δ[k](xi, vj). (3.44)

The flow chart of SLWENO coupled with IDC(M +1)J(K) for the VP system is

outlined below.
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Algorithm 3.15. A SLWENO scheme coupled in the IDC framework for

the VP system:

1. Find the prediction solution ~η[0] = (η
[0]
0 , . . . , η

[0]
M ) at time step

subintervals for each spatial and velocity location (xi, vj), ∀i =

1, . . . , Nx, j = −Nv/2, . . . , Nv/2, by using the dimensional splitting

SLWENO scheme.

2. For k = 1, . . . , K

Perform the correction loop to update the solution ~η[k].

• Solve the numerical error vector ~δ[k] = (δ
[k]
0 , . . . , δ

[k]
M ) by evolving

the split error equations (3.38)-(3.40) with zero initial condition

at time step subintervals for each spatial and velocity location.

Specifically,

For m = 0, . . . ,M − 1,

(a) Evolve δ
[k]
m by solving equation (3.38) to get δ

[k]
m,∗ by the

SLWENO scheme.

(b) Evolve δ
[k]
m,∗ by solving equation (3.39) to get δ

[k]
m,∗∗ by the

SLWENO scheme.

(c) Evolve δ
[k]
m,∗∗ by solving equation (3.40) in an IDC fashion

using equation (3.42) to get δ
[k]
m+1.

End For

• update the solution by ~η[k] = ~η[k−1] + ~δ[k].

End For
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The proposed IDC-dimensional splitting SLWENO scheme enjoys the mass con-

servation property; see the following proposition.

Proposition 3.16. Algorithm 3.15 conserves the total mass for solving the VP

system, if the boundary conditions are periodic.

Proof: First note that the SLWENO scheme conserves the total mass when periodic

boundary conditions are imposed. Thus, we have

∑

i

∑

j

η
[0]
0 (xi, vj) =

∑

i

∑

j

η
[0]
1 (xi, vj) = . . . =

∑

i

∑

j

η
[0]
M (xi, vj), (3.45)

for the prediction. By (3.44), to prove the mass conservation, it is sufficient to prove

∑

i

∑

j

δ[k]m (xi, vj) = 0, k = 1, . . . , K, m = 0, . . . ,M. (3.46)

Let’s prove (3.46) for k = 1. A similar argument carries over for general k.

The split error equations (3.38)-(3.40) are solved with zero initial condition, hence

∑
i

∑
j δ

[1]
0 (xi, vj) = 0. Now assume

∑
i

∑
j δ

[1]
m (xi, vj) = 0, we will prove

∑

i

∑

j

δ
[1]
m+1(xi, vj) = 0.

Due to the total mass conservative property of SLWENO, we get

∑

i

∑

j

δ[1]m,∗(xi, vj) = 0,
∑

i

∑

j

δ[1]m,∗∗(xi, vj) = 0. (3.47)

Since the derivatives in equation (3.42) are written into a flux difference form, it
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follows that

∑

i

∑

j

δ
[1]
m+1(xi, vj) =

∑

i

∑

j

δ[1]m,∗∗(xi, vj)−
∑

i

∑

j

∆τ

∆v
Eδ

[k]
m,∗(

̂
η
[k−1]
m i,j+ 1

2
− ̂

η
[k−1]
m i,j− 1

2
)

−
∑

i

∑

j

M∑

ℓ=0

αm,ℓ g(η
[0]
ℓ (xi, vj)) +

∑

i

∑

j

η
[0]
m+1(xi, vj)−

∑

i

∑

j

η[0]m (xi, vj).

Thanks to (3.45), (3.47) and the cancellation of the flux difference form, we get

∑

i

∑

j

δ
[1]
m+1(xi, vj) = −

∑

i

∑

j

M∑

ℓ=0

αm,ℓ g(η
[0]
ℓ (xi, vj))

= −
M∑

ℓ=0

αm,ℓ

∑

i

∑

j

g(η
[0]
ℓ (xi, vj))

= 0,

where the last equality holds due to the flux difference form of g in (3.43). By

induction, we complete the proof.

Remark 3.17. Algorithm 3.15 can be extended to IDC methods coupled with sec-

ond order Strang splitting without additional complication. The only modification is

to employ the Strang splitting SLWENO scheme to get a prediction, and again employ

the Strang splitting to solve the split error equations (3.38)-(3.40). The procedure of

an IDC method coupled with the second order Strang splitting is denoted as IDC-

Strang(M +1)J(K), when M +1 uniformly distributed quadrature nodes and K cor-

rection loops are used. The numerical results reported below indicate that the temporal

order accuracy of the IDC-Strang method for the VP system can be increased with

second order per correction. The modified IDC-Strang splitting SLWENO scheme
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also enjoys the mass conservation property. The proof is quite similar, therefore we

omit it.

IDC Methods for the Guiding Center Model

We consider the guiding center model, which describes a highly magnetized plas-

ma in the transverse plane of a tokamak [105, 34]. We consider equation

ρt + E⊥ · ∇ρ = 0. (3.48)

where ρ is the particle density function, E⊥ = (−E2, E1) with the electrostatic field

E = (E1, E2) satisfying a 2-D Poisson’s equation

∆Φ = ρ, E = −∇Φ. (3.49)

Compared to the VP system, the 1-D equations obtained from dimensional splitting

of equation (3.48) are variable coefficient equations. We apply the SLWENO algo-

rithm in [85] as described in Section 3.2 as 1-D solvers. The 2-D Poisson’s equation

is again solved by a 2-D FFT. The computational procedure of applying the IDC

method to reduce the splitting error is similar to that for the VP system, except that

we need to formulate a new residual function and an error equation for the guiding

center model (3.48). Below we provide the residual function and the error equation

for the guiding center Vlasov equation with notations that are consistent with the

previous subsection.
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• The residual function is defined as

ǫ(t, x, y) = − (ηt − (Eη
2η)x + (Eη

1η)y) (3.50)

where Eη = −∇Φη with ∆Φη = η.

• The error equation about the error function e(t, x, y) = ρ(t, x, y)− η(t, x, y) is

obtained by adding (3.50) to (3.48),

et − (Eρ
2ρ− Eη

2η)x + (Eρ
1ρ− Eη

1η)y = ǫ, (3.51)

where Eρ and Eη are the electrostatic field induced by the exact solution

ρ(t, x, y) and the numerical solution η(t, x, y) respectively. From ρ = η + e

and Eρ = Eη + Ee, we have

et − ((Ee
2 + Eη

2 )e)x + ((Ee
1 + Eη

1 )e)y − (Ee
2η)x + (Ee

1η)y = ǫ, (3.52)

where Ee is the electrostatic field induced by the error function e(t, x, y). Sim-

ilar to the proposed scheme for the VP system, the error equation is evolved

with zero initial conditions by dimensional splitting,

et − ((Ee
2 + Eη

2 )e)x = 0, (3.53)

et + ((Ee
1 + Eη

1 )e)y = 0, (3.54)

et − (Ee
2η)x + (Ee

1η)y = ǫ. (3.55)
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Again, the 1-D equations (3.53)-(3.54) are solved by the SLWENO method,

and the last equation above is solved in a similar manner as equation (3.41)

for the VP system. Similar to Proposition 3.16, the algorithm enjoys the mass

conservation property, since the splitting is performed in a conservative way.

Numerical Stability

IDC is a numerical approach in generating time stepping algorithms with high

order accuracy, yet numerical stability of the IDC method using SLWENO as the

base scheme remains to be investigated. In the following, we investigate stability

properties of the proposed IDC-SLWENO method via classical Fourier analysis. We

provide the CFL restriction for stability when the method is applied to a linear

problem as guidance for choosing numerical time steps for general nonlinear problems

below.

We consider the linear model problem (3.1) with constant coefficient a = 1.

Assume the mesh is uniform and boundary conditions are periodic. We consider a

subinterval in IDC with time step size ∆τ . An explicit linear scheme for equation

(3.1) can be written in the following form:

un+1
j =

l∑

k=−r

Cku
n
j+k, (3.56)

where Ck, k = −r, . . . , l are constants, that depend on the CFL number λ
.
= ∆τ/∆x

but are independent of the solution. For example, the third order linear SL scheme
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combined with IDC2J0 reads:

un+1
j =

1

6
λ⋆
(
(λ⋆)2 − 1

)
un
j⋆−2 +

1

2
λ⋆
(
−(λ⋆)2 + λ⋆ + 2

)
un
j⋆−1

+
1

2

(
(λ⋆)3 − 2(λ⋆)2 − λ⋆ + 2

)
un
j⋆ −

1

6
λ⋆
(
(λ⋆)2 − 3λ⋆ + 2

)
un
j⋆+1

where j⋆ = j − ⌊λ⌋ and λ⋆ = λ − ⌊λ⌋. The third order linear SL scheme combined

with IDC2J1 reads:

un+1
j =− 1

72
λ2
(
λ2 − 1

)
un
j−4 +

1

24
λ2
(
3λ2 − λ− 4

)
un
j−3

+
1

12
λ
(
−4λ3 + 4λ2 + 7λ− 2

)
un
j−2 +

1

36
λ
(
13λ3 − 24λ2 − 16λ+ 36

)
un
j−1

− 1

24

(
3λ4 − 10λ3 + 5λ2 + 12λ− 24

)
un
j +

1

24
λ
(
−λ3 + λ2 + 4λ− 8

)
un
j+1

+
1

36
λ2
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when 0 < λ < 1; and
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+
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λ
(
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)
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when 1 ≤ λ < 2.
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Classical Fourier analysis is performed to linear schemes in the form of (3.56).

We substitute un
j = gneijξ into linear schemes in the form of (3.56) and compute the

corresponding amplification factors g. We use Mathematica to derive the explicit

form of numerical schemes and the corresponding amplification factors g. The time

step restriction from linear stability can be obtained by maximizing the CFL number

λ with the constraint that g ≤ 1 for any ξ ∈ [0, 2π]. We remark that it is exceedingly

tedious and sometimes very difficult to derive the upper bounds of the CFL number

analytically, especially for high order schemes. Hence we rely on numerical approach-

es to obtain such upper bounds: we find the maximum λ such that g ≤ 1 for 2000

evenly distributed points {ξn} over [0, 2π]. In Table 3.10, we list the upper bounds

of the CFL numbers for several numerical schemes which use linear SL schemes as

base solvers in the IDC framework, of different orders. It is observed that the CFL

upper bounds for an IDC subinterval are comparable to those of the Eulerian RK

WENO scheme with the same orders of accuracy. As commented in Remark 3.14,

there are (K + 1) function evaluations for the IDC(M + 1)J(K) method per IDC

subinterval ∆τ , where (K + 1)th order accuracy is achieved at all quadrature nodes

τm, m = 0, · · · ,M . The IDC method is considered to be efficient among Eulerian RK

methods with the same order of accuracy. We remark that Fourier analysis can be

extended to arbitrary order cases, however the algebraic manipulations may become

prohibitively complicated.

Numerical Results

Now, we present some simulation results for solving the VP system, the guiding

center Vlasov model and the 2-D incompressible Euler equations. Through these
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Table 3.10: The upper bounds of the CFL numbers. SL3 and SL5 are SL schemes
with the third and fifth order linear reconstructions. IDC(M + 1)J(K) denotes an
IDC procedure with M+1 uniformly distributed quadrature nodes and K correction
loops.

Scheme IDC2J0 IDC2J1 IDC3J0 IDC3J1 IDC3J2
SL3 No restriction 1.50 No restriction 0.73 0.67
SL5 No restriction 1.55 No restriction 0.71 0.66

examples, we numerically demonstrate the low order dimensional splitting error, and

the IDC’s ability to correct these errors. In the simulations,

CFL = ∆τ

( |ax|
∆x

+
|av|
∆v

)
,

where |ax| and |av| are maximum wave propagation speeds in the x− and the v−

directions respectively, and ∆τ is the size of a sub-interval in the IDC method.

Again, IDC(M + 1)J(K) and IDC-Strang(M + 1)J(K) denote IDC procedures with

M + 1 uniformly distributed quadrature nodes and K correction loops coupling the

first order splitting and the Strang splitting, respectively. The length of the domain

in the x−direction is L = 2π
k

and the background ion distribution function is fixed,

uniform and chosen so that the total net charge density for the system is zero. To

minimize the error from truncating the domain in the v−direction, we let vmax = 2π.

A fifth order SLWENO scheme is employed as a base scheme to achieve fifth order

spatial accuracy.

Example 3.18. (Accuracy validation.) We validate the capacity of the proposed

scheme in correcting the low order splitting error. We set the computational mesh
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as Nx × Nv = 400 × 400. In the simulation, we fix the spatial mesh and compute

the numerical solutions up to T= 0.1 with different CFL numbers. A reference

solution is computed with CFL = 0.01 by using IDC3J3. In Table 3.11-3.13, we

report the L1 error and the orders of accuracy when IDC methods of different orders

coupled with first order splitting strategy are used for the VP system with three sets

of initial conditions including the strong Landau damping (3.28), the two stream

instability I (3.29) and the two stream instability II (3.30). It is observed that the

dimensional splitting error in time is significantly reduced when the IDC framework

is applied, and (K + 1)th order of accuracy is clearly achieved for IDC3JK (K ≤ 3).

In Table 3.14, the L1 error and the orders of accuracy for IDC methods coupled with

Strang splitting are reported, where (2K + 2)th order of accuracy is observed for

IDC-Strang3JK (K ≤ 1). We remark that: in terms of stability, the Strang splitting

is advantageous as it is known to be unconditionally stable, whereas the proposed

scheme with IDC3J1 is only conditionally stable, see Table 3.10. When the CFL

number is small enough, e.g., CFL = 0.6, the magnitudes of errors from IDC3J1 and

the second order Strang splitting (IDC-Strang3J0 in Table 3.14) are comparable;

however, the computational cost from the Strang splitting scheme is less than that

of the IDC3J1 scheme. Also note that the performance of IDC methods with first

order splitting and Strang splitting are very similar when the same order accuracy

and CFL numbers are considered; hence, we only report the numerical results from

IDC methods with first order splitting below for brevity.

Example 3.19. (Performance assessment.) We assess the ability of the proposed

IDC-SLWENO schemes in preserving the physical norms of the VP system. The
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Table 3.11: Strong Landau damping. T= 0.1. L1 error and orders of accuracy.

IDC3J0 IDC3J1 IDC3J2 IDC3J3
CFL L1 error order L1 error order L1 error order L1 error order
0.6 3.85E-06 – 9.71E-09 – 2.22E-11 – 1.83E-13 –
0.5 3.23E-06 0.97 6.79E-09 1.96 1.30E-11 2.95 8.90E-14 3.95
0.4 2.60E-06 0.98 4.37E-09 1.97 6.67E-12 2.98 3.66E-14 3.98
0.3 1.94E-06 1.02 2.44E-09 2.03 2.79E-12 3.03 1.15E-14 4.03
0.2 1.30E-06 0.99 1.09E-09 1.98 8.34E-13 2.98 2.31E-15 3.95

Table 3.12: Two stream instability I. T= 0.1. L1 error and orders of accuracy.

IDC3J0 IDC3J1 IDC3J2 IDC3J3
CFL L1 error order L1 error order L1 error order L1 error order
0.6 4.46E-07 – 2.36E-09 – 9.23E-12 – 1.25E-13 –
0.5 3.73E-07 0.98 1.66E-09 1.94 5.43E-12 2.91 6.16E-14 3.88
0.4 2.99E-07 1.00 1.06E-09 2.00 2.78E-12 3.00 2.52E-14 4.00
0.3 2.24E-07 1.00 5.94E-10 2.02 1.17E-12 3.02 7.93E-15 4.02
0.2 1.50E-07 0.99 2.65E-10 1.99 3.48E-13 2.98 1.60E-15 3.94

mesh is reset as Nx × Nv = 256 × 256 and CFL = 0.6. We track the evolution

histories of these quantities and only show the results of total mass and energy here.

In Figure 3.24, we report time evolution of the relative deviation in the total mass and

the total energy for all three problems. It is observed that the proposed scheme can

preserve the total mass up to machine error as stated in Proposition 3.16. Moreover,

the higher order schemes can better preserve the total energy than the first order

scheme (IDC3J0). The performance of the second (IDC3J1), third (IDC3J2), and

fourth (IDC3J3) order schemes are qualitatively similar. The reason may be that

the error from the spatial discretization dominates the temporal error in these test

cases. At last, we show the contour plots of the numerical solution for the strong
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Table 3.13: Two stream instability II. T= 0.1. L1 error and orders of accuracy.

IDC3J0 IDC3J1 IDC3J2 IDC3J3
CFL L1 error order L1 error order L1 error order L1 error order
0.6 6.72E-07 – 2.33E-09 – 3.61E-12 – 1.79E-14 –
0.5 5.56E-07 1.04 1.61E-09 2.04 2.08E-12 3.02 8.60E-15 4.01
0.4 4.46E-07 0.99 1.03E-09 2.00 1.07E-12 3.00 3.53E-15 3.99
0.3 3.36E-07 0.98 5.84E-10 1.98 4.53E-13 2.98 1.13E-15 3.95
0.2 2.24E-07 1.00 2.60E-10 2.00 1.34E-13 3.00 2.65E-16 3.58

Table 3.14: IDC methods with Strang splitting for the VP systems. T= 0.1. L1

error and orders of accuracy.

Strong Landau damping Two stream instability II
IDC-Strang3J0 IDC-Strang3J1 IDC-Strang3J0 IDC-Strang3J1

CFL L1 error order L1 error order L1 error order L1 error order
0.6 5.27E-09 – 7.97E-14 – 1.07E-09 – 5.62E-14 –
0.5 3.68E-09 1.96 3.88E-14 3.94 7.55E-10 1.91 2.78E-14 3.87
0.4 2.37E-09 1.98 1.60E-14 3.97 4.89E-10 1.94 1.14E-14 3.98
0.3 1.32E-09 2.03 5.05E-15 4.01 2.82E-10 1.91 3.64E-15 3.97
0.2 5.93E-10 1.98 1.04E-15 3.90 1.37E-10 1.78 7.99E-16 3.74

Landau damping in Figure 3.25, two stream instability I and II in Figure 3.26 and

3.27 respectively to demonstrate the performance of the proposed scheme. We only

report the numerical results by the high order IDC3J3 method with CFL = 0.6

for brevity. The results agree well with those by the hybrid schemes in previous

subsection and by other methods presented in the literature [52, 97, 84].

Example 3.20. (2-D guiding center Vlasov equation.) We consider the guiding

center model (3.48) with the initial condition [34]

ρ(0, x, y) = sin(y) + 0.015 cos(kx),
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and periodic boundary conditions. We let k = 0.5, thereby creating a Kelvin-

Helmholtz instability. In the simulations, we set a mesh as Nx×Ny = 128×128. We

use a third order SLWENO scheme as a base scheme to achieve third order spatial

accuracy. In Figure 3.28 (top), we report the contour plots of numerical solutions

at time T= 40 for the first order splitting scheme (IDC3J0) and the third order

scheme (IDC3J2) with CFL = 0.67. A noticeable difference is observed. In Figure

3.29 (left), 1-D cuts of the numerical solutions at y = π are plotted. The reference

solution is computed by IDC3J2 with CFL = 0.05. It can be observed that the

numerical solution obtained by IDC3J2 with CFL = 0.67 qualitatively matches the

reference. However, a significant difference between the numerical solution obtained

by the first order scheme and the reference solution is observed. Then we reduce the

CFL number to 0.05 for the first order splitting scheme. The 2-D contour plot by

the first order scheme approximately matches the reference by IDC3J2, see Figure

3.28 (bottom). A more precise match is also observed when the 1-D cuts of the

numerical solutions are compared. The presented numerical evidence shows better

performance from higher order numerical schemes in time. Note that the continu-

ous guiding center model (3.48) preserves the L2 norms of ρ (enstrophy) and the L2

norms of E (energy), i.e.,

d

dt
‖ρ(t)‖L2 =

d

dt
‖E(t)‖L2 = 0.

We track the relative deviations of these invariants numerically as a measurement

of the quality of numerical schemes. In Figure 3.30, the time evolutions of the

enstrophy and the energy for the first order splitting scheme (IDC3J0), the second
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order scheme (IDC3J1) and the third order scheme (IDC3J2) are reported. It is

observed that these quantities are better preserved by higher order schemes in time.

Also note that little difference can be observed between the IDC3J1 and IDC3J2

solutions. In this case, the spatial error may dominate.

Example 3.21. (2-D incompressible Euler equations.) We consider 2-D incompress-

ible Euler equations in the vorticity stream-function formulation as follows

ωt +∇ · (uω) = 0, x ∈ [0, 2π], y ∈ [0, 2π]. (3.57)

Here u = ∇⊥Φ = (−Φy,Φx), where Φ is solved from the Poisson’s equation ∆Φ = ω.

We note that equation (3.57) is in the same form as the 2-D guiding center Vlasov

equation (3.48). We first test the accuracy of the schemes with the following initial

conditions:

ω(t = 0, x, y) = −2 sin(x) sin(y),

and periodic boundary conditions. Note that the exact solution is identical to the

initial condition. We use this example to check the orders of accuracy of our proposed

schemes when the IDC framework is adopted to correct the splitting error. In the

simulation, we fix the spatial mesh asNx×Ny = 300×300 and compute the numerical

solutions with different CFLs. We evolve the solutions up to time T= 1. In Table

3.15, we report the L1 error and orders of accuracy for the first order splitting scheme

(IDC3J0), the second order scheme (IDC3J1) and the third order scheme (IDC3J2).

Expected orders of accuracy are observed. Note that third order convergence is not

clearly observed for IDC3J2 when the CFL numbers are relatively small (CFL≤ 0.5).
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In this case, the spatial error begins to dominate when the numerical error is around

9.00E − 9. The L1 error for IDC3J2 with CFL = 0.01 is 9.31E − 09. We remark

that there is a certain range of CFL numbers (which could be a very small interval),

related to the spatial resolution and accuracy, where the temporal order of accuracy

can be numerically observed. Above that range, the scheme is either numerically

unstable or the order of convergence can not be observed yet; below that range, the

spatial error could dominate, with which the temporal order of convergence can no

longer be observed.

Table 3.15: 2-D incompressible Euler equation. A third order SLWENO scheme
coupled in the IDC framework. L1 norms of errors and orders of accuracy. Nx×Ny =
300× 300. T= 1.

IDC3J0 IDC3J1 IDC3J2
CFL L1 error L1 order L1 error L1 order L1 error L1 order
0.67 2.16E-03 – 8.89E-06 – 5.39E-08 –
0.62 2.00E-03 0.97 7.63E-06 1.97 4.26E-08 3.02
0.57 1.83E-03 1.02 6.43E-06 2.03 3.29E-08 3.07
0.52 1.67E-03 0.99 5.36E-06 1.99 2.51E-08 2.96
0.47 1.51E-03 1.01 4.37E-06 2.01 1.92E-08 2.63

We then consider two benchmark tests. One is shear flow with the initial condition

given by:





ω(t = 0, x, y) = δ cos(x)− 1

ρ
sech2((y − π/2)/ρ), if y ≤ π,

ω(t = 0, x, y) = δ cos(x) +
1

ρ
sech2((3π/2− y)/ρ), if y > π,

(3.58)

where δ = 0.05 and ρ = π
15
. The other is a vortex patch, and the initial condition is
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given by:





ω(t = 0, x, y) = −1, if (x, y) ∈ [
π

2
,
3π

2
]× [

π

4
,
3π

4
],

ω(t = 0, x, y) = 1, if (x, y) ∈ [
π

2
,
3π

2
]× [

5π

4
,
7π

4
],

ω(t = 0, x, y) = 0, otherwise.

(3.59)

In the simulations for the shear flow, we set the mesh as Nx ×Ny = 128× 128. The

third order SLWENO scheme is used to obtain solutions in the IDC prediction step.

In Figure 3.31, we report the contours of the numerical solution at time T= 8 for

the first order splitting scheme and IDC3J2. Little difference can be observed from

the contour plot. To better see the difference, in Figure 3.32, 1-D cuts at x = π

of the numerical solution are reported. We use the solution computed by IDC3J2

with CFL = 0.05 as a reference. It is observed that the solution by IDC3J2 with

CFL = 0.67 matches the reference solution very well, whereas there is a noticeable

difference between the solution by the first order scheme with CFL = 0.67 and

the reference. Then we reduce the CFL to 0.05 for the first order scheme and the

corresponding temporal error is reduced. A more precise match is observed. The

comparison shows the better performance of coupling the high order IDC methods

to correct low order splitting errors. For the vortex patch test, we set the mesh size

as Nx × Ny = 256 × 256. Figure 3.33 gives the numerical solutions at time T= 5

(top) and T= 10 (bottom) for the first order scheme (IDC3J0) (left) and IDC3J2

(right). The solution structure is observed to be slightly better resolved when the

high order IDC framework is used.
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Figure 3.24: The time evolution of the relative deviation in total mass (left) and
total energy (right). Nx ×Nv = 256× 256. CFL = 0.6.
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Figure 3.25: Contour plots of the numerical solutions for the strong Landau damp-
ing. Nx ×Nv = 256× 256. CFL = 0.6. IDC3J3.
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Figure 3.26: Contour plots of the numerical solutions for the two stream instability
I. Nx ×Nv = 256× 256. CFL = 0.6. IDC3J3.
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Figure 3.27: Contour plots of the numerical solutions for the two stream instability
II. Nx ×Nv = 256× 256. CFL = 0.6. IDC3J3.
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Figure 3.28: Contour plots of the numerical solutions for the Kelvin-Helmholtz
instability. Nx × Ny = 128 × 128. CFL = 0.67 (top) and CFL = 0.05 (bottom) at
T= 40. First order scheme (IDC3J0) (left); Third order scheme (IDC3J2) (right).
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Figure 3.29: 1-D cuts of the numerical solutions at y = π for the Kelvin-Helmholtz
instability. Nx × Ny = 128 × 128. T= 40. CFL = 0.67 (left); CFL = 0.05 (right).
The reference solution is computed by IDC3J2 with CFL = 0.05.
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Figure 3.30: The Kelvin-Helmholtz instability. The time evolutions of the energy
‖E‖L2 (left) and the enstrophy ‖ρ‖L2 (right). Nx ×Ny = 128× 128. CFL = 0.67.
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Figure 3.31: Contour plots of the numerical solutions for the shear flow test. Nx ×
Ny = 128 × 128. CFL = 0.67 at T= 8. First order scheme (IDC3J0) (left); Third
order scheme (IDC3J2) (right).
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Figure 3.32: 1-D cuts of the numerical solutions at x = π for the shear flow test.
Nx ×Ny = 128× 128. T= 8. CFL = 0.67 (left); CFL = 0.05 (right). The reference
solution is computed by IDC3J2 with CFL = 0.05.
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Figure 3.33: Contour plots of the numerical solutions for the vortex patch test.
Nx ×Ny = 256× 256. CFL = 0.67 at T= 5 (top) and T= 10 (bottom). First order
scheme (IDC3J0) (left); Third order scheme (IDC3J2) (right). 30 equally spaced
contours from -1.1 to 1.1.
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3.5 Applications to Global Transport

In an operational climate model, the total computational expense is dominated by

that of the tracer transport scheme, which is accountable for O(100) tracer species

including several moisture variables. Recently, [37] showed that the multi-tracer

transport scheme CSLAM [62] based on the finite-volume SL philosophy is an effi-

cient alternative to the native SE transport scheme based on the Eulerian approach

in CAM framework. As the number of tracer species increases to more than six

or so, the semi-Lagrangian scheme becomes significantly more efficient. This is due

to the fact that once the upstream trajectory and other geometric information are

computed, they can be reused for each tracer field. Although the semi-Lagrangian

scheme can take a larger time step, a moderate value CFL ≈ 1 would be desirable to

maintain the parallel efficiency. However, the CSLAM scheme employs its own uni-

form finite-volume cells within each spectral element defined by highly non-uniform

GL quadrature points [37]. This necessitates two grids system, one for the SE dy-

namics (GL) and the other one for the CSALM transport, requiring a grid-to-grid

remapping.

The objective of this section is to develop a conservative SLDG scheme based

on a dimensional splitting strategy on the cubed-sphere geometry. The scheme is

particularly designed for a nodal DG discretization employing GL grids with the

CFL number approximately 1. The SLDG scheme can be directly implemented for

SE grids, and does not require two grids system as in the case of SE and CSLAM

combination.
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3.5.1 Cubed-Sphere Geometry

The cubed-sphere geometry [100, 95] is free from polar singularities, and well-suited

for element-based Galerkin methods. Below, we consider the cubed-sphere mesh

generated by an equiangular central projection as described in [76]. In the cubed-

sphere grid system, the spherical domain is partitioned into six identical regions

(faces). On each face, gridlines follow nonorthogonal curvilinear coordinate system

(x1, x2) such that x1, x2 ∈ [−π/4, π/4], see Figure 1.1. Each face of the cubed sphere

is tiled with Ne×Ne elements (cells) so that 6×N2
e elements span the entire spherical

domain. See Figure 1.1 for the relative position of six faces and the equiangular

central projection from the Cartesian mesh on the cube to the curvilinear mesh on

the sphere with Ne = 5. The metric tensor associated with the equiangular central

(gnomonic) mapping is given by

gij =
R2

ρ4 cos2 x1 cos2 x2
×




1 + tan2 x1 − tan x1 tan x2

− tanx1 tanx2 1 + tan2 x2


 , (3.60)

where i, j,∈ {1, 2}, ρ = 1 + tan2 x1 + tan2 x2 and R is radius of the sphere. Denote

g = det(gij), then the Jacobian of the transformation is given by
√
g, which is

identical on each face. We refer to [76] for all the conversion formulas between the

usual Lat-Lon velocity components a, b and the contravariant components a1, a2 on

the cubed sphere.
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3.5.2 A Semi-Lagrangian DG Scheme on the Cubed Sphere

The transport equation for a scalar u on the cubed sphere can be re-written in

(x1, x2)-space on each face as follows [123]:

∂U

∂t
+

∂F1(U)

∂x1
+

∂F2(U)

∂x2
= 0, (3.61)

where U = u
√
g, and the fluxes F1 = a1 U , and F2 = a2 U ; the Jacobian

√
g is a

given continuous function of the curvilinear coordinate transform. For the DG spatial

discretization, each element is further mapped onto Np × Np GL grids. Figure 1.1

(bottom) shows a cubed-sphere discretized with uniform size elements with Ne = 5

and Np = 4. The equation (3.61) is in a conservative form, similar to equation (3.19)

for a Cartesian mesh. Therefore, the SLDG scheme can be implemented in a similar

fashion as that for a Cartesian mesh previously described. As we directly work with

U , the mass conservation property of numerical solution is preserved. Below, we

focus our description on the differences of implementation.

The cubed-sphere grid lines may be interpreted as three families of piecewise

closed great-circle arcs (ξ, η, ζ) on the sphere, see Figure 1.1 and Figure 3.34. We

exploit this idea for solving transport equations on the cubed sphere.

Due to this special geometric feature of the cubed-sphere grid system, there exists

three logical transport directions denoted as ξ−, η−, and ζ−directions as shown in

Figure 3.34. Specifically,
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Figure 3.34: Schematic showing of the SLDG scheme on mesh 2×2×6 of the cubed-
sphere geometry. 4 × 4 GL points per element are used as an example. Advection
of ξ−direction (upper left) ; advection of η−direction (upper right); advection of
ζ−direction (bottom).

• ξ is the direction along the x1−axis of face1, face2, face3, and face4, see Fig-

ure 1.1 and Figure 3.34 (upper left).

• η is the direction along the x2−axis of face1, face3, face5, and face6, see Figure

3.34 (upper right);

• ζ is the direction along the x2−axis of face2, and face4, and along the x1−axis

of face5 and face6, see Figure 3.34 (bottom).
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In the (ξ, η, ζ) coordinate, the transport equation (3.61) on the cubed sphere can be

re-written as

∂U

∂t
+

∂F̃1(U)

∂ξ
+

∂F̃2(U)

∂η
+

∂F̃3(U)

∂ζ
= 0, (3.62)

where F̃1, F̃2, F̃3 ∈ {F1, F2} such that (3.61) and (3.62) are equivalent on any given

face. We note that the unknown function U only depends on two variables (x1, x2)

on each cube face. For example, U is dependent only on ξ (x1) and η (x2) on face1

and only on ξ (x1) and ζ (x2) on face2, also see Figure 3.34. Thus, equation (3.62)

is essentially identical to (3.61) on each face. A second order Strang-type splitting

strategy for multiple operators proposed in [42] can be used to equation (3.62). We

summarize the procedure as follows:

1. The equation (3.62) is split into three 1-D advection problems on the cubed

sphere:

∂U

∂t
+

∂F̃1(U)

∂ξ
= 0, (3.63)

∂U

∂t
+

∂F̃2(U)

∂η
= 0, (3.64)

∂U

∂t
+

∂F̃3(U)

∂ζ
= 0. (3.65)

2. The numerical solution is updated by a Strang-type splitting strategy for one

time step ∆t:

(a) Evolve 1-D equation (3.63) in the direction ξ for ∆t/2, see Figure 3.34
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(upper left);

(b) Evolve 1-D equation (3.64) in the direction η for ∆t/2, see Figure 3.34

(upper right);

(c) Evolve 1-D equation (3.65) in the direction ζ for ∆t, see Figure 3.34

(bottom);

(d) Evolve 1-D equation (3.64) in the direction η for ∆t/2 as (b);

(e) Evolve 1-D equation (3.63) in the direction ξ for ∆t/2 as (a).

The evolution of each 1-D equation follows a similar procedure as that for the

Cartesian mesh, except for the tracing of characteristics across face edges. As before,

we employ a fourth order RK method for solving the characteristic equations, e.g.,

dx1(t)

dt
= a1(x1(t), x2

jg, t), (3.66)

where x2
jg is a fixed GL point in x2−direction. Below we only demonstrate the initial

value problem case (forward trajectory), while the backward case is similar. Note

that special treatment is needed, since the velocity a1 takes different expressions

on different faces. Below is the procedure implemented in our code in the case

of characteristics emanating from (x⋆, tn) crossing the edge of face1 and face2, see

Figure 3.35.

1. Find the time point t⋆ ∈ [tn, tn+1], when the trajectory reaches the face edge,

denoted as xe. The following gives a second order way of approximating t⋆

when the u1
s (s = 1 or 2 being the index for a face) is time independent, see

118



3.5. APPLICATIONS TO GLOBAL TRANSPORT

Figure 3.35 (left):

xe − x⋆ =
t⋆ − tn

2
(a11(xe) + a11(x

⋆)), or

t⋆ = tn +
2(xe − x⋆)

a11(xe) + a11(x
⋆)
. (3.67)

In some practical applications, such as the multi-tracer transport, u1
s is only

given at tn, so it is reasonable to assume that a1s is constant in [tn, tn+1]. In the

time dependent case, assume we have a high order RK method (e.g. a fourth

order RK method) to solve the initial value problem (3.66) with x1(tn) = x⋆.

Denote the numerical solution of equation (3.66) at time t as RK(t; x⋆, tn),

then we want to find t⋆ such that

RK(t⋆; x⋆, tn) = xe. (3.68)

We adopt the Newton’s type method to solve (3.68):

(a) Using (3.67) to get:

t⋆,0 = tn +
2(xe − x⋆)

a11(xe, tn) + a11(x
⋆, tn)

,

which is a good prediction of t⋆.
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Figure 3.35: Get the arrival point x of the SLDG scheme at the edge of face1 and
face2. Find the time t⋆ when the trajectory emanating from x⋆ reaches the edge
(left); get the arrival point x starting at time t⋆ (right).

(b) Set a threshold ǫ and do the following iteration:

xj
e = RK(t⋆,j ; x⋆, tn);

If |xj
e − xe| < ǫ, stop, and let t⋆ = t⋆,j ,

else

t⋆,j+1 = t⋆,j +
xj
e − xe

a11(x
j
e, t⋆,j)

.

In the simulation, it takes about 3-5 iterations to reach an error tolerance

of ǫ = 10−10.

2. Continue evolving the characteristic curve on face2 to locate the arrival point

x at the next time step tn+1, see Figure 3.35 (right).

Numerical Results

In the following, we consider two types of 2-D spherical advection tests for the
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SLDG scheme on the sphere. The tests include a solid body rotation and two defor-

mation flow tests.

Example 3.22. (Solid body rotation of a cosine bell.) Solid body rotation of a

cosine bell is a widely used standard test for 2-D spherical advection problem [112].

The initial scalar distribution (cosine bell) is defined by

u(t = 0, λ, θ) =





(h0/2)[1 + cos(πrd/r0)] if rd < r0,

0 if rd ≥ r0,

where rd is the great-circle distance between (λ, θ) and the bell center which is

(3π/2, 0) at t = 0, h0 = 1000m is the maximum height of the cosine bell, and

r0 = R/3 represents the radius of the bell, here R = 6.37122 × 106 is the earth’s

radius. The wind components in the longitudinal (λ) and latitudinal (θ) directions

are defined as follows:

a = a0(cosα cos θ + sinα0 cosλ sin θ),

b = −a0 sinα sin λ,

where a0 = 2πR/(12 days) and α is the rotation angle, which is between the axis

of the solid body rotation and the polar axis of the spherical coordinate. The flow

is oriented along the equatorial direction when α = 0 and the northeast direction

when α = π/4. Note that the configuration with α = π/4 is more challenging for the

cubed-sphere geometry. In this case, the cosine bell goes through four vertices, two

edges and all six faces. The wind field is non-divergent, which means the maximum

principle holds. The exact solution is available at all times and the cosine bell
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reaches its initial state after a complete (12 days) rotation, thus error measures can

be computed.

We apply the SLDG P 3 scheme to the solid body rotation problem with mesh

20 × 20 × 6 corresponding to 1.5◦ resolution at the equator for the cubed-sphere

geometry. The time step is set as ∆t = 3600 sec, which is 6 times larger than that

used by the RKDG P 2 scheme in [123]. In Table 3.16, we report the standard nor-

malized error norms based on [112] with α = 0 and α = π/4. The error measured

are comparable to those by the RKDG scheme in [76, 123]. Note that the proposed

scheme is exactly mass conservative. In Figure 3.36, the contour plots of the numer-

ical solution are reported for α = π/4. The results are observed to be comparable to

those produced by a non-oscillatory RKDG scheme presented in [123]. The evolution

of error norms are given in Figure 3.37 for α = 0 (panel (a) and (b)) and α = π/4

(panel (c)-(f)). Note that the L∞ error grows significantly when a cosine bell goes

through a corner for α = π/4 with ∆t = 3600 sec. However, the L∞ error drops

back quickly when it is away from the corner, see Figure 3.37 (panel (c) and (d)). If

the time step ∆t is reduced to 1800 sec, the L∞ error is also reduced, see Figure 3.37

(panel (e) and (f)). This indicates that the L∞ error around corners comes from time

discretization. In Figure 3.38 (top), numerical error is plotted when the cosine bell

approaches (left), reaches (middle) and passes (right) a corner on the cubed sphere.

It is observed that error magnitude at cube edges is much larger than elsewhere. The

error grows as the peak of the cosine bell approaches a corner on the cubed sphere;

the error starts to drop as the peak passes the corner. We then consider a different

ordering for dimensional splitting: we first evolve (3.65), then (3.63), and finally
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Table 3.16: Normalized standard errors for φ, for the 2-D solid body rotation test
with α = 0 and α = π/4 on the cubed-sphere geometry. The SLDG P 3 scheme is
used on a 20 × 20 × 6 (1.5◦ resolution) and time step is set as ∆t = 3600 sec. The
numerical solution is computed after a full rotation.

Scheme L1 L2 L∞ mass error
α = 0 SLDG 1.04E−02 7.03E−03 6.53E−03 −5.20E−13

SLDG + BP 8.50E−03 5.82E−03 6.72E−03 −5.20E−13
α = π/4 SLDG 1.17E−02 7.70E − 03 7.20E−03 −4.13E−13

SLDG + BP 8.93E−03 6.06E−03 7.46E−03 −4.12E−13

(3.64). Similar error patterns but with opposite signs are observed in Figure 3.38

(bottom). This is an indication that such error comes from the dimensional split-

ting, and there exist certain symmetry property for different dimensional splitting

orderings. Such symmetry property, together with the symmetry of the cosine bell

profile, may contribute to the dropping of the L∞ error after the cosine bell passed

the corner.

We compare the proposed SLDG scheme with the RKDG scheme and the semi-

Lagrangian “CSLAM” scheme by [62], in terms of error norms. In Table 3.17, we

show the comparison between the SLDG scheme and the RKDG scheme when P 3 is

used. The mesh is set as 30× 30× 6 (Ne = 30) which corresponds to approximately

1◦ resolution at the equator. Note that the SLDG scheme can take a very large time

step but the RKDG scheme suffers from the time step restriction (1400 sec is nearly

the limit for time step in this case). The CPU time for the SLDG scheme is three

times smaller than that of the RKDG scheme. We remark that the computational

cost per time step of the SLDG scheme is larger than that of the RKDG scheme.

It is due to the need to evaluate volume integrals in several sub-intervals for one
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Table 3.17: Comparison between the RKDG scheme and the SLDG scheme in terms
of error norms and CPU time when solving the solid body rotation of a cosine bell.
The mesh is set as 30× 30× 6 corresponding 1◦ resolution. DG P 3 is adopted. The
numerical solutions are computed after a full rotation.

Scheme time step CPU time L2 L∞

α = 0 RKDG P 3 1440 sec 9.76 sec 1.14E−02 7.55E−03
SLDG P 3 7200 sec 3.32 sec 3.70E−03 4.33E−03
SLDG P 3 3600 sec 6.31 sec 2.80E−03 3.12E−03

α = π/4 RKDG P 3 1440 sec 9.76 sec 1.21E−02 7.97E−03
SLDG P 3 7200 sec 3.32 sec 1.72E−02 3.56E−02
SLDG P 3 3600 sec 6.31 sec 5.15E−03 9.25E−03

element, see equation (3.9). We also remark that the SL scheme is significantly

efficient for the multi-tracer transport because the geometric information such as

upstream trajectories can be reused for each field. In spite of the larger time steps

used with the SLDG scheme, the error norms are still comparable to those of the

RKDG scheme. This shows the SLDG scheme to be more efficient when solving

the solid body rotation problem. Finally, we compare the SLDG scheme with the

CSLAM [62], when the horizontal resolution and the time step are comparable. For

this experiment, the mesh for the SLDG P 3 scheme is set to 10× 10× 6 (Ne = 10),

which corresponds to 3◦ resolution, and a 32 × 32 × 6 mesh is set for the CSLAM

scheme, which corresponds to 2.8125◦ resolution. Note that we use a little lower

resolution mesh for the SLDG scheme. Table 3.18 shows the error norms of the two

schemes performing the solid body rotation of a cosine bell with α = 0 and α = π/4.

The time step is set as 4050 sec. It is observed that the error norms of SLDG P 3

are a little smaller than those of CSLAM. The comparison with the two popular

transport schemes as discussed above shows the SLDG scheme is very competitive.
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Table 3.18: Comparison between SLDG P 3 and CSLAM [62] in terms of error norms
when solving the solid body rotation of a cosine bell. The mesh is set as 10× 10× 6
for SLDG corresponding to 3◦ resolution and 32× 32× 6 for CSLAM corresponding
to 2.8125◦ resolution. The numerical solutions are computed after a full rotation
with time step ∆t = 4050 sec.

Scheme L1 L2 L∞

α = 0 SLDG P 3 7.52E−02 4.20E−02 3.31E−02
CSLAM 7.9E−02 4.6E−02 3.4E−02

α = π/4 SLDG P 3 7.15E−02 3.66E−02 2.25E−02
CSLAM 7.6E−02 4.1E−02 2.5E−02

Example 3.23. (Deformational flow on the sphere: moving-vortex problem.) The

second test is a challenging deformational flow test, the moving-vortex problem,

proposed by [73]. The test represents the roll-up of an idealized moving atmospheric

vortex such as hurricane or tropical cyclone [48]. In this test case, two vortices are

generated located on the diametrically opposite sides of the sphere. The wind field

is a combination of wind vectors of the solid body rotation, which is considered in

the previous case, and that of the deformational flow. The two vortices move along

a great circle and the exact solution is available at any time. In a rotated coordinate

system (λ′, θ′), the scaled tangential velocity Vt of the vortex field is defined by

Vt = u0
3
√
3

2
sech2(ρ)tanh(ρ),

where ρ = ρ0 cos(θ
′) is the radial distance of the vortex with the parameters ρ0 = 3,

and rotational speed u0 = 2πR/12 (days) such that 12 days are required for a full
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vortex evolution. The associated angular velocity is defined to be

ω(θ′) =





Vt/(Rρ) if ρ 6= 0,

0 if ρ = 0.

The exact solution in rotated coordinates is

u(t, λ′, θ′) = 1− tanh

[
ρ

γ0
sin(λ′ − ω(θ′)t)

]
, (3.69)

here parameter γ0 = 5. The time dependent wind field for the moving vortex is given

by

a(t) = a0(cos θ cosα + sin θ cosλ sinα)

+Rω(θ′)[sin θc(t) cos θ − cos θc(t) cos(λ− λc(t)) sin θ],

b(t) = −a0 sinλ sinα +Rω(θ′)[cos θc(t) sin(λ− λc(t))],

where α is the flow orientation parameter described earlier and (λc(t), θc(t)) is the

center of one of the moving vortices, which is directed along a great circle trajectory.

For the current test, the initial vortex center is located at (λc(0), θc(0)) = (3π/2, 0),

which is also the location of the north pole of the rotated sphere.

We applied the SLDG P 3 scheme to the moving-vortex problem with a mesh

30×30×6 (1◦ resolution) on the cubed-sphere geometry. The time step is set as ∆t =

3600 sec which is six times larger than that used in [123]. In Figure 3.39, the evolution

of numerical solution is shown for α = π/4 as a series of orthographic projections
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centered on one of the vortices. The initial condition is shown in Figure 3.39a and the

numerical solution at day 3, day 6 and day 12 are shown in Figure 3.39b, Figure 3.39c,

Figure 3.39d, respectively. The numerical solutions are visually indistinguishable

from the exact solution, which is not shown for saving space. At this resolution,

the SLDG scheme resolves the fine filaments of the vortex field and is comparable

to the results shown in Figure 2 of [73] and Figure 8 of [82]. When approximated

to two decimal places, the normalized standard L1, L2 and L∞ errors are 4.40E−4,

1.06E−3 and 9.55E−3, respectively. The histories of error norms evolution are

plotted in Figure 3.40 for α = 0 and α = π/4. A similar phenomenon is observed

that the L∞ error norm grows when the vortices go through the corners, then it

drops back when they are away from the corners.

We employ the SLDG scheme with high order elements (P 6) to study its per-

formance. For this test a mesh 15 × 15 × 6 is adopted, which corresponds to 1◦

resolution on the cubed-sphere geometry. The time step is set to be 3600 sec as be-

fore. The numerical solution is visually indistinguishable from the exact solution, so

it is not shown to save space. Here we give the normalized standard L1, L2 and L∞

errors after 12 model days. They are 3.53E−4, 7.28E−4 and 8.28E−3, respectively.

Note that the error norms are a little smaller than those computed by the SLDG P 3

scheme with the same resolution, this is an expected behavior of high order methods

with smooth problems.

Example 3.24. (Deformational flow on the sphere: slotted-cylinder.) The last

benchmark test we consider is a challenging test from a class of deformational flow

tests proposed by [74]. This test is quite challenging for any advection scheme on
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the sphere because the flow filed is extremely deformational (non-divergent) with

a non-smooth initial condition. Since the analytic solution is available at the final

time, errors measures can be made available for comparison.

The non-divergent wind field is defined to be

a(t, λ, θ) = κ sin2(λ′) sin(2θ) cos(πt/T) + 2π cos(θ)/T,

b(t, λ, θ) = κ sin(λ′) cos(θ) cos(πt/T),

where λ′ = λ − 2πt/T, κ = 2 and T= 5 units. Note that the wind field is a com-

bination of a deformational field and a zonal background flow, avoiding the possible

cancellations of errors due to the reversal of the flow along the same flow path after

the half time T/2, see [74]. The initial condition is the twin slotted-cylinder defined

by:

u(t = 0, λ, θ) =





c if ri ≤ r and |λ− λi| ≥ r/6 for i = 1, 2,

c if r1 ≤ r and |λ− λ1| < r/6 and θ − θ1 < − 5
12
r,

c if r2 ≤ r and |λ− λ2| < r/6 and θ − θ2 >
5
12
r,

d otherwise,

(3.70)

where c = 1, d = 0, r = 1/2 is the radius of the cylinder and ri = ri(λ, θ) is the great-

circle distance between (λ, θ) and a specified center (λi, θi) of the cylinder, which is

given by

ri(λ, θ) = arccos[sin θi sin θ + cos θi cos θ cos(λ− λi)].

The centers of the initial distribution are located at (λ1, θ1) = (5π/6, 0) and (λ2, θ2) =
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(7π/6, 0), respectively. The slots are oriented in opposite directions for the two

cylinders so that they are symmetric with respect to the flow. The wind field and

initial distributions are defined in non-dimensional units on the unit sphere (R = 1).

Note that the distribution is stretched into thin filaments and at half time T/2 while

they are being transported along the zonal direction by the background flow. The

exact solution is only available at the final time t = T which is identical to the initial

condition.

We apply the SLDG P 3 scheme with the BP filter to the deformational flow

problem with a mesh 30 × 30 × 6 corresponding to 1◦ resolution at the equator for

the cubed-sphere geometry. The time step is set as ∆t = T/800 such that it takes

800 step to complete a full evolution. Note that ∆t is chosen as 5 times larger than

that used for the RKDG P 2 scheme in [123]. Figure 3.41 shows the initial condition

(a), the numerical solution at half time t = T/2 (b) and final time t = T. It is clearly

observed that the SLDG scheme resolves the very thin filament solution structures

at half time and the original shape of the twin slotted-cylinder at final time is also

captured. Moreover, the numerical solution preserves the positivity exactly and

compares to that reported in the [123].

We consider a variant of this test by changing the initial condition where the non-

smooth twin slotted-cylinder is replaced by two symmetrically located quasi-smooth
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cosine bells defined as follows [74]:

u(t = 0, λ, θ) =





d+ ch1(λ, θ) if r1 < r,

d+ ch2(λ, θ) if r2 < r,

d otherwise,

(3.71)

where c = 0.9, d = 0.1 and

hi(λ, θ) =
1

2
[1 + cos(πri/r)] if ri < r, for i = 1, 2.

Other parameters are the same as those used for the slotted-cylinder case. Note that

the initial condition is quasi-smooth (C1 smoothness). We want to use this test case

to compare the proposed SLDG scheme with the CSLAM scheme in terms of error

norms. The mesh is set as 20×20×6 corresponding to 1.5◦ resolution at the equator

and the time step is set as ∆t = T/600. In Table 3.19, we show the L1, L2 and

L∞ error norms of SLDG P 3 and those of CSLAM reported in [74] with the same

resolution and time step. It is observed that the L1, L2, and L∞ error norms by

SLDG are approximately 2/3-3/4 of those by CLSAM. We conclude that when the

CFL number approximately equals 1 and the same resolutions are considered, the

errors by SLDG are smaller than those by CSLAM when solving the deformational

flow problem.
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Table 3.19: Comparison between the SLDG P 3 scheme and the CSLAM scheme [62]
in terms of error norms when solving the deformational flow of two symmetrically
located cosine bells. The mesh is set as 20× 20× 6 for SLDG corresponding to 1.5◦

resolution and 60 × 60 × 6 for CSLAM corresponding to the same resolution. The
result of CSLAM is from [74]. The numerical solutions are computed after a full
rotation with time step ∆t = T/600.

Scheme L1 L2 L∞

SLDG P 3 0.0393 0.0673 0.1109
CSLAM 0.0533 0.1088 0.1421

Figure 3.36: Solid body rotation of a cosine bell with α = π/4. The SLDG P 3

scheme on a cubed-sphere mesh 20 × 20 × 6 (1.5◦ resolution), ∆t = 3600 sec. (a)
Exact (initial) solution; (b) the numerical solution without the BP filter; (c) the
numerical solution with the BP filter.
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(e) SLDG, α=π/4∆t=1800s,
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(a) SLDG , α=0t=3600s,∆
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(c) SLDG, α=π/4∆ t=3600s,

Figure 3.37: The histories of error norms evolution for the solid body rotation. The
SLDG P 3 scheme is applied on a cubed-sphere mesh 20 × 20 × 6 (1.5◦ resolution).
The time step is set as ∆t = 3600 sec for panel (a)-(d) and ∆t = 1800 sec for panel
(e)-(f). (a) Evolution of error norms for the SLDG scheme without the BP filter
when α = 0; (b) evolution of error norms for the SLDG scheme with the BP filter
when α = 0. Comparable result is observed to Panel (a); (c) evolution of error
norms for the SLDG scheme without the BP filter when α = π/4. The L∞ grows
when the cosine bell goes through a corner, where the the splitting error is larger
than elsewhere; (d) evolution of error norms for the SLDG scheme with the BP filter
when α = π/4; (e) evolution of error norms for the SLDG scheme without the BP
filter when α = π/4 and ∆t = 1800 sec; the L∞ does not excessively grows when
the cosine bell goes through the corner; (f) evolution of error norms for the SLDG
scheme with the BP filter when α = π/4 and ∆t = 1800.
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3.5. APPLICATIONS TO GLOBAL TRANSPORT

Figure 3.38: The error pattern for the solid body rotation problem when the cosine
bell passes one corner. The SLDG P 3 scheme is applied on a cubed-sphere mesh
20×20×6 (1.5◦ resolution). The time step is set as ∆t = 3600 sec. Panel (a)-(c) are
from the method using the dimensional splitting as described in Subsection 3.5.2;
penal (d)-(f) are from the method with another ordering for dimensional splitting as
described in Example 3.22. Panel (a) and (d) are for t = 36 h; panel (b) and (e) are
for t = 43 h; panel (c) and (f) are for t = 50 h.
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Figure 3.39: An orthographic projection of the solution of moving-vortex test with
α = π/4. The SLDG P 3 scheme is applied on a cubed-sphere mesh 30 × 30 × 6 (1◦

resolution) and time step is set as ∆t = 3600 sec. (a) Initial vortex filed; (b) the
numerical solution by SLDG P 3 at day 3; (c) the numerical solution by SLDG P 3 at
day 6; (d) the numerical solution by SLDG P 3 at day 12. The numerical solutions
are visually identical to the exact solution, therefore it is not shown.
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(b) SLDG α=π/4

Figure 3.40: The histories of error norms evolution for the moving-vortex test. The
SLDG P 3 scheme is applied on a cubed-sphere mesh 30× 30× 6 (1◦ resolution) and
time step is set as ∆t = 3600 sec. (a) Evolution of error norms for SLDG P 3 when
α = 0; (b)evolution of error norms for SLDG P 3 when α = π/4. The L∞ error grows
when the vortices go through the edges and corners, where the the splitting error is
larger than elsewhere. However, the it drops back when the vortex is away from the
edges or corners.
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Figure 3.41: Numerical solution for the deformational flow test with twin slotted-
cylinder as the initial condition. The SLDG P 3 scheme with BP filter is applied on
a cubed-sphere mesh 30 × 30 × 6 (1◦ resolution) and time step is set as t = T/800.
(a) Initial condition: twin slotted-cylinder; (b) the numerical solution by SLDG P 3

at half time t = T/2. The thin filaments is resolved; (c) the numerical solution by
SLDG P 3 at the finial time T = 5 . The slotted cylinders are captured by the SLDG
scheme. T is set as 5. Also note that the numerical solution is exactly positivity
preserving.
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CHAPTER 4

Superconvergence of Discontinuous Galerkin Schemes

In this chapter, we investigate superconvergence properties of DG schemes. First,

Fourier analysis for DG and LDG schemes is reviewed. Then, we study supercon-

vergence of DG and LDG schemes via the eigenstructure analysis in the Fourier

approach framework. The last part pursues superconvergence analysis for the DG

schemes with a high order Lax-Wendroff (LW) time discretization.
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4.1 Fourier Analysis for DG and LDG Schemes

In this section, we review Fourier analysis for the DG scheme (2.3) and the LDG

scheme (2.10). Fourier analysis is also named von Neumann analysis in the literature,

which can provide a sufficient condition of a ‘bad’ scheme, i.e., the amplification

factor or the eigenvalues of the amplification matrix of a scheme should have a

negative real part for linear stability. Even though Fourier analysis only applies to

linear schemes for linear equations with periodic conditions and uniform meshes,

it provides a guideline to analyze the underlying schemes in more general settings.

Below, we will use this technique to analyze superconvergence properties of DG and

LDG schemes in different frameworks.

4.1.1 Fourier Analysis for DG Schemes

First of all, we consider the following linear hyperbolic equation

ut + aux = 0, x ∈ [0, 2π], t > 0,

u(0, x) = exp(iωx), x ∈ [0, 2π],

(4.1)

with periodic boundary conditions. Note that we let f(u) = au in (2.1) with a

indicating wave propagation speed. The initial condition is a plane wave and ω is

the wave number. For convenience, assume that a > 0.

After applying the DG scheme (2.3), we obtain a ODEs system (2.6) which can
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be rewritten as

duj

dt
=

a

∆x
(Auj +Buj−1) , (4.2)

where A and B are (k + 1)× (k + 1) constant matrices.

Under the assumption of uniform meshes and periodic boundary conditions,

Fourier analysis starts by making the following ansate

uj(t) = û(t)exp(iωxj), (4.3)

substituting which into the DG scheme (4.2) provides the following ODE system for

the coefficient vector û(t),

d

dt
û(t) = aGû(t), (4.4)

where G is the amplification matrix, given by

G =
1

∆x
(A +Be−iξ), ξ = ω∆x. (4.5)

If G is diagonalizable, denote the eigenvalues of G as λ0, · · · , λk and the correspond-

ing eigenvectors as Ṽ0, · · · , Ṽk. Then the general solution of the ODE system (4.4)

is

û(t) = C0 e
aλ0tṼ0 + · · ·+ Ck e

aλktṼk, (4.6)
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where C0, · · · , Ck can be determined by the initial condition. Let Vl = ClṼl, l =

0, · · · , k, then

û(t) = eaλ0tV0 + · · ·+ eaλktVk, (4.7)

which is an explicit representation of a DG solution for future time t > 0.

4.1.2 Fourier Analysis for LDG schemes

Below we review Fourier analysis of LDG schemes (2.10). We consider the following

linear heat equation

ut = uxx, x ∈ [0, 2π], t > 0,

u(0, x) = exp(iωx), x ∈ [0, 2π],

(4.8)

with periodic boundary conditions.

Similar to the DG scheme, the LDG scheme for equation (4.8) with uniform

meshes can be rewritten in the following form:

duj

dt
=

1

∆x2
(A1uj−1 +Buj + A2uj+1) , (4.9)

where uj is a vector of degrees of freedom on cell Ij defined in (2.5). A1, B and A2

are (k+1)× (k+1) constant matrices. Assume that the LDG solution is in the form
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of equation (4.3). Substituting (4.3) into (4.9) gives

d

dt
û(t) = Gû(t), (4.10)

with the amplification matrix G given by

G =
1

∆x
(A1e

−iξ +B + A2e
iξ), ξ = ω∆x. (4.11)

As in equation (4.7) for the DG solution, the explicit form of the LDG solution can

also be expressed based on eigenvalues and eigenvectors of G in equation (4.11) if G

is diagonalizable.

4.2 Eigen-Structures of G: Error Estimate

4.2.1 DG Schemes

One-dimensional Scalar and System of Linear Hyperbolic Equations

Depending on different choices of basis functions in DG implementation, the

amplification matrix G could be different. The eigenvalues of G however will stay the

same, since the DG method is independent of the choice of basis functions. However,

the eigenvectors will be basis-dependent. In order to reveal the superconvergence at

shifted Radau points, we analyze G matrix based on the basis functions that are the

141



4.2. EIGEN-STRUCTURES OF G: ERROR ESTIMATE

Lagrangian polynomials

φl
j(x) =

∏

i 6=l

x− xi
j

xl
j − xi

j

, (4.12)

where

xl
j = xj +

ζk,l
2
∆x, l = 0, · · · , k

are the k + 1 shifted Radau points. {ζk,l} are the roots of the Radau polynomial

Pk+1(ζ)−Pk(ζ), where Pk(ζ) is the Legendre polynomial of degree k normalized such

that
ˆ 1

−1

Pi(x)Pj(x) =
2

2i+ 1
δij ,

where δij is the Kroneker delta. Such choice of basis functions will help to reveal the

superconvergence properties at Radau and downwind points [1, 15].

Proposition 4.1. Consider DG methods with polynomial space P k (k = 1, 2, and 3)

for linear hyperbolic problem (4.1) with uniform meshes. Consider Fourier analysis

of the DG method using Lagrangian polynomials (4.12) based on shifted Radau points

as basis functions. The amplification matrix G is diagonalizable with k + 1 distinct

eigenvalues. One of these eigenvalues denoted as λ0 is the physically relevant one; it

approximates the analytical value −iω with dissipation error on the order of 2k + 1

and dispersion error on the order of 2k+2. The rest of eigenvalues λ1, · · ·λk have a

negative real part with the magnitude on the order of 1
∆x

.

Proof. We perform symbolic computations via Mathematica to analyze eigenvalues

of G. Here is a summary of our results:
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• P 1 case

λ0 = −iω − ω4

72
∆x3 − iω5

270
∆x4 +O(∆x5)

λ1 = − 6

∆x
+O(1)

• P 2 case

λ0 = −iω − ω6

7200
∆x5 − iω7

42000
∆x6 +O(∆x7)

λ1,2 =
−3 ±

√
51i

∆x
+O(1)

• P 3 case

λ0 = −iω − 7.08× 10−7ω8∆x7 − 9.00× 10−8iω9∆x8 +O(∆x9)

λ1,2 =
−0.42± 6.61i

∆x
+O(1), λ3 = −19.15

∆x
+O(1)

It can be checked from above that for k = 1, 2, and 3

R(−iω − λ0) = O(∆x2k+1), I(−iω − λ1) = O(∆x2k+2).

R(λl) < 0, |R(λl)| = O(
1

∆x
), l = 1, · · ·k.

Remark 4.2. The fact that the non-physically relevant eigenvalues have large neg-

ative real part on the order of 1
∆x

indicates that the corresponding eigenvectors will
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be damped exponentially fast with respect to ∆x over time.

Proposition 4.3. With the same assumption as Proposition 4.1, the eigenvector

V0 corresponding to the physically relevant eigenvalue λ0 approximates û(0) in equa-

tion (4.7) with order k+2 at Radau points and with order 2k+1 at downwind points.

The non-physically relevant eigenvectors Vl, l = 1, · · · , k are of order k+2 at Radau

points.

Proof. We perform symbolic computations via Mathematica. Below is a summary

of our results:

• P 1 case

V0 − û(0) =




iω3

162
∆x3 +O(∆x4)

−iω3

54
∆x3 +O(∆x4)




V1 =




− iω3

162
∆x3 +O(∆x4)

iω3

54
∆x3 +O(∆x4)
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• P 2 case

V0 − û(0) =




(3 + 8
√
6)ω4

20000
∆x4 +O(∆x5)

(3− 8
√
6)ω4

20000
∆x4 +O(∆x5)

− iω5

3000
∆x5 +O(∆x6)




V1 =




−
(
153 + 408

√
6 + i18

√
34− i29

√
51
)
ω4

2040000
∆x4 +O(∆x5)

−
(
153− 408

√
6− i18

√
34− i29

√
51
)
ω4

2040000
∆x4 +O(∆x5)

− iω4

160
√
51

∆x4 +O(∆x5)




V2 =




−
(
153 + 408

√
6− i18

√
34 + i29

√
51
)
ω4

2040000
∆x4 +O(∆x5)

−
(
153− 408

√
6 + i18

√
34 + i29

√
51
)
ω4

2040000
∆x4 +O(∆x5)

iω4

160
√
51

∆x4 +O(∆x5)




• P 3 case

V0 − û(0) =




−4.58× 10−5iω5∆x5 +O(∆x6)

4.81× 10−5iω5∆x5 +O(∆x6)

−2.61× 10−5iω5∆x5 +O(∆x6)

−2.43× 10−6iω7∆x7 +O(∆x8)
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V1 =




(2.13× 10−5 + i1.19× 10−5)ω5∆x5 +O(∆x6)

(1.55× 10−6 − i1.86× 10−5)ω5∆x5 +O(∆x6)

(−1.73× 10−5 + i9.61× 10−6)ω5∆x5 +O(∆x6)

(6.53× 10−6 + i2.31× 10−5)ω5∆x5 +O(∆x6)




V2 =




(−2.13× 10−5 + i1.19× 10−5)ω5∆x5 +O(∆x6)

(−1.55× 10−6 − i1.86× 10−5)ω5∆x5 +O(∆x6)

(1.73× 10−5 + i9.61× 10−6)ω5∆x5 +O(∆x6)

(−6.53× 10−6 + i2.31× 10−5)ω5∆x5 +O(∆x6)




V3 =




2.20× 10−5iω5∆x5 +O(∆x6)

−1.09× 10−5iω5∆x5 +O(∆x6)

6.85× 10−6iω5∆x5 +O(∆x6)

−4.62× 10−5iω5∆x5 +O(∆x6)




Clearly, for k = 1, 2, and 3, V0 approximates û(0) with order 2k + 1 at downwind

points and with order k+2 at other Radau points. Vl, l = 1, · · ·k are of order (k+2)

at Radau points.

Remark 4.4. We remark that the choice of Lagrangian basis functions based on

shifted Radau points is crucial in estimating superconvergence properties at Radau

points. If we choose other basis functions, e.g. Lagrangian basis functions based on

uniformly distributed points as in [119], then the eigenvector V0 approximates û(0)
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with order k + 1 at all points, and Vl, l ≥ 1, is of order k + 1 at all points. Details

of symbolic computation are omitted for brevity.

Proposition 4.5. With the same assumption as Proposition 4.1, let u(T ) = û(0)

exp(iωxj − ω2T ) and uh(T ) = û(T )exp(iωxj) be point values of exact solution and

numerical solution at shifted Radau points on a cell Ij. Let e = u − uh. Then for

T > 0,

‖e(T )‖ ≤ C1aT∆x2k+1 + C2∆xk+2 + C3exp(−C
aT

∆x
)∆xk+2, (4.13)

where C, C1, C2, and C3 are positive constants independent of ∆x and ‖ · ‖ can be

any norm for vectors.

Proof. Note that in (4.7), û(0) =
∑k

l=0 Vl. By Equation (4.7), Proposition 4.1 and

4.3, we have

‖e(T )‖ = ‖u(T )− uh(T )‖

= ‖(exp(−iωaT )û(0)−
k∑

l=0

exp(λlaT )Vl‖

(4.7)
= ‖(exp(−iωaT )

k∑

l=0

Vl −
k∑

l=0

exp(λlaT )Vl‖

≤ ‖(exp(−iωaT )− exp(λ0aT ))V0‖+ |exp(−iωaT )|‖
k∑

l=1

Vl‖

+
k∑

l=1

‖exp(λlaT )Vl‖
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≤ |exp(−iωaT )− exp(λ0aT )|‖V0‖+ ‖û(0)− V0‖+
k∑

l=1

|exp(λlaT )|‖Vl‖

≤ C1aT∆x2k+1 + C2∆xk+2 + C3exp(−C
aT

∆x
)∆xk+2,

where C, C1, C2, and C3 are positive constants independent of ∆x. Notice that ‖V1‖

is of order 1 by Proposition 4.3.

Remark 4.6. From Proposition 4.5, it can be seen that under the assumption of

uniform mesh, the error of the DG solution for a linear hyperbolic problem can be

decomposed as three parts:

1. Dissipation and dispersion errors of the physically relevant eigenvalue. This

part of error will grow linearly in time and is of order 2k + 1.

2. Projection error ‖u∗ − u‖. That is, there exists a special projection of the

solution,

u∗(T ) = P ∗
hu(T ) = exp(iω(xj − aT ))V1

on cell Ij, such that the numerical solution is much closer to the special projec-

tion of exact solution (‖uh − u∗‖ = O(∆x2k+1)), than the exact solution itself.

The projection error

‖u∗ − u‖ = O(∆xk+2)

will not grow in magnitude in time. By Proposition 4.3, such special projection

approximates the exact solution at Radau points with order k+2 with the excep-

tion of Radau point at downwind end, which is of order 2k+1. Unfortunately,

the analytical form of such special projection is only known symbolically and is
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subject to further investigation.

3. Dissipation of non-physically relevant eigenvectors. This part of error will decay

exponentially fast over time with respect to ∆x if a ≥ a0 > 0.

Remark 4.7. When a > a0 ≥ 0, the error e(T ) in Proposition 4.5 is of order k + 2

at Radau points and is of order 2k + 1 at downwind points.

Remark 4.8. Based on the error estimate (4.13), one can conclude

(a) when T = o( 1
∆xk−1 ), O(∆xk+2) is the dominant term in (4.13); this term will

not grow with time;

(b) when T = O( 1
∆xk−1 ) (very long time integration), C1aT∆x2k+1 is the dominant

term in (4.13); this term grows linearly with time and is of order 2k + 1.

Since it is hard to check numerically the long time behavior of the error of DG

solutions, we propose to use the following Corollary as a way to numerically assess

our theoretical results discussed in this section.

Corollary 4.9. Consider DG methods with polynomial space P k (k = 1, 2, and 3)

for linear problem (4.1) with uniform mesh. Let n > 1 be an integer, then

‖uh(t+
2nπ

a
)− uh(t)‖ ≤ C1n(∆x2k+1) + C2exp(−

Cat

∆x
)∆xk+2, (4.14)

where C, C1, and C2 are positive constants independent of ∆x.
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Proof.

‖uh(t+
2nπ

a
)− uh(t)‖ = ‖

k∑

l=0

(exp(λl(at+ 2nπ))− exp(λlat))Vl‖

≤ |exp(λ0(at+ 2nπ))− exp(λ0at)|‖V0‖

+

k∑

l=1

|exp(λl(at + 2nπ))− exp(λlat)|‖Vl‖

≤ |exp(λ02nπ)− exp(iω2nπ)||exp(λ0at)|‖V0‖

+C2exp(−
Cat

∆x
)∆xk+2

≤ C1n|λ1 − iω|+ C2exp(−
Cat

∆x
)∆xk+2

≤ C1n∆x2k+1 + C2exp(−
Cat

∆x
)∆xk+2.

Remark 4.10. Assume a = 1, let T = 2nπ + t with t = O(1), then the first term

on the r.h.s. of (4.14) is the dominant term.

‖e(T )‖ = ‖u(T )− uh(T )‖

= ‖u(t)− uh(2nπ + t)‖

≤ ‖uh(2nπ + t)− uh(t)‖+ ‖u(t)− uh(t)‖.

Since ‖uh(2nπ + t) − uh(t)‖ is order of 2k + 1 and grows linearly with n, we can

conclude that the error e(T ) will not grow linearly in time until T = O( 1
∆xk−1 ).

Remark 4.11. When a is of order 1, the dominant error on the r.h.s. of (4.14) is

of order 2k + 1. This observation is numerically verified in many examples below.

When a is very small, the dominant error is of order k+2, rather than 2k+1. This
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observation is important in explaining the numerical performance of DG schemes

for a nonlinear Burgers’ equation in Example 4.32 and for a rotational problem in

Example 4.36.

Remark 4.12. Proposition 4.5 and Corollary 4.9 can be extended to a linear hyper-

bolic system Ut +AUx = 0, where An×n is a constant diagonalizable matrix with real

eigenvalues. This is due to the fact that the hyperbolic system can be decoupled into

n scalar equations.

DG Schemes for 2-D Problems: Qk

Now, we analyze the DG method for a 2-D linear advection equation

ut + aux + buy = 0, (x, y) ∈ [0, 2π]2, (4.15)

via Fourier analysis. We assume that a, b > 0 are constant. Consider a uniform parti-

tion of the computational domain as [0, 2π]2 = ∪i,jIij = ∪i,j[xi− 1
2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
].

The basis functions are chosen to be 2-D functions Qk which are tensor products of

1-D ones on each cell Iij . Define the approximation space

V k
h = {v : v|Iij ∈ Qk(Iij); 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}. (4.16)

The semi-discrete DG method using the upwind flux for solving (4.15) is defined as
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follows: find uh ∈ V k
h , such that

ˆ

Iij

(uh)tv dxdy

= a

ˆ

Iij

uhvx dxdy + b

ˆ

Iij

uhvy dxdy (4.17)

−a
( ˆ y

j+1
2

y
j− 1

2

(uh)
−
i+ 1

2
,j
(y)v(x−

i+ 1
2

, y) dy −
ˆ y

j+1
2

y
j− 1

2

(uh)
−
i− 1

2
,j
(y)v(x+

i− 1
2

, y) dy
)

−b
( ˆ x

i+1
2

x
i−1

2

(uh)
−
i,j+ 1

2

(x)v(x, y−
j+ 1

2

) dx−
ˆ x

i+1
2

x
i− 1

2

(uh)
−
i,j− 1

2

(x)v(x, y+
j− 1

2

) dx
)

for all v ∈ V k
h , and 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. As in the 1-D case, to reveal the

superconvergence properties at Radau nodes, we use the following basis functions

Bm,n = Lm(x)Ln(y), m, n = 0, · · · , k,

where Lm(x) and Ln(y) are shifted Radau Lagrangian basis functions (4.12) in x−

and y− directions respectively. Please see Figure 4.1 for distribution of shifted Radau

points in a cell.

In Fourier analysis, the DG solution is assumed to be of the form

u(t) = û(t)exp(iωxxi + iωyyj), (4.18)

where û(t) is the coefficient vector of (k + 1)2 elements. We substitute equation

(4.18) into the DG scheme (4.17) to obtain an ODE system for the coefficient vector

d

dt
û(t) = Gû(t).
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Figure 4.1: Radau points in two-dimensional case.

Let Gx,ωx and Gy,ωy be the 1-D amplification matrix in x− and y−direction, respec-

tively. Then the 2-D amplification matrix G can be written as

G = aI ⊗Gx,ωx + bGy,ωy ⊗ I, (4.19)

where ⊗ is the tensor product or Kronecker product of two matrices.

Proposition 4.13. The 2-D amplification matrix G in equation (4.19) has (k+ 1)2

eigenvalues,

aλx,(p) + bλy,(q), p, q = 0, · · · , k,

with the corresponding eigenvectors

V y,(q) ⊗ V x,(p),

where λx,(p) and V x,(p), p = 0, · · · k, λy,(q) and V y,(q), q = 0, · · · , k are eigenvalues
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and eigenvectors for Gx,ωx and Gy,ωy , respectively.

Proof. Since (A⊗ B)(x⊗ y) = Ax⊗ By, we have

G(V y,(q) ⊗ V x,(p)) = (aI ⊗Gx,ωx + bGy,ωy ⊗ I)(V y,(q) ⊗ V x,(p))

= aV y,(q) ⊗ (Gx,ωxV x,(p)) + bGy,ωyV y,(q) ⊗ V x,(p)

= aλx,(p)(V y,(q) ⊗ V x,(p)) + bλy,(q)(V y,(q) ⊗ V x,(p))

= (aλx,(p) + bλy,(q))(V y,(q) ⊗ V x,(p)).

Similar to the 1-D case, based on our understanding on the eigen-structures of

2-D amplification matrices, we have the following error estimate for the DG method

with Qk basis functions for a 2-D linear advection problem (4.15). The proof is

similar to the 1-D case, and thus is omitted.

Proposition 4.14. Consider DG methods with polynomial space Qk (k = 1, 2, and 3)

for the 2-D linear hyperbolic problem (4.15) with uniform mesh sizes ∆x and ∆y in

x− and y−directions respectively. Let u(T ) = û(0)exp
(
iωx(xi − aT ) + iωy(yj − bT )

)

and uh(T ) = û(T )exp(iωxxj + iωyyj) be point values of exact and numerical solution

at shifted Radau points in a cell Iij. Let e = u− uh, then for T > 0,

‖e(T )‖ ≤C1T (a∆x2k+1 + b∆y2k+1) + C2(∆xk+2 +∆yk+2) (4.20)

+ C3exp(−CT (
a

∆x
+

b

∆y
))(∆xk+2 +∆yk+2),

where C, C1, C2, and C3 are positive constants independent of ∆x and ∆y.
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Remark 4.15. Consider a DG method for the 2-D linear hyperbolic problem (4.15)

using polynomial spaces

P k(Iij) = {
∑

i+j≤k

cijx
iyj} (4.21)

as polynomials up to degree k on each cell Iij. Unlike the Q
k case, the eigen-structure

for a 2-D amplification matrix cannot be analyzed via our understanding on a 1-

D case, since the number of basis functions increase quadratically with k and it is

difficult to obtain the roots of an algebraic equation of degree higher than 4.

4.2.2 LDG Schemes

In this subsection, we discuss the eigen-structure of the amplification matrix from an

LDG scheme for linear parabolic problem (4.8). As in a DG scheme, we formulate the

amplification matrix with Lagrangian basis functions (4.12) based on the k+1 shifted

Radau points. Such choice of basis functions will help to reveal superconvergence

properties at Radau points [2, 16]. The direction of the Radau points is determined

by the choice of the numerical flux. In the following analysis and simulations, we

choose û = u− and q̂ = q+. In this case, the right-shifted Radau points are used and

the corresponding downwind points are x−
j+ 1

2

. Note that the amplification matrix of

the LDG scheme for equation (4.8) can be derived from the amplification matrix of

DG scheme for equation (4.1) with a = 1 directly. Specifically, let GDG and GLDG

denote the amplification matrix of DG and LDG respectively. Then

GLDG = −WḠDGWGDG. (4.22)
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Here ḠDG is the conjugate of GDG, i.e.,

GDG =
1

∆x
(A+Be−iξ), ḠDG =

1

∆x
(A +Beiξ),

with the notations introduced in (4.5). W is the change of basis matrix, which maps

function values at right-shifted Radau points to left-shifted ones. By the symmetry

of right-shifted and left-shifted Radau points distribution, W features the property

W−1 = W. For example, for P 1 case, the right-shifted Radau points are ordered as

(xj− 1
6
, xj+ 1

2
), the left-shifted ones are ordered as (xj+ 1

6
, xj− 1

2
), and

W =




1

2

1

2

3

2
−1

2


 .

Notice the symmetry of these two set of points with respect to xj . Due to such

symmetry, it can be checked that W−1 = W as claimed above.

Proposition 4.16. Consider LDG methods with polynomial space P k (k = 1, 2, and 3)

for linear parabolic problem (4.8) with uniform mesh. Consider Fourier analysis

of the LDG method using Lagrangian basis functions (4.12) based on shifted Radau

points. The amplification matrix G is diagonalizable with (k+1) distinct eigenvalues.

One of these eigenvalues denoted as λ0 is the physically relevant one, approximating

−ω2 with dissipation error on the order of 2k+2. The rest of eigenvalues λ1, · · · , λk

have negative real part with the magnitude on the order of 1
∆x2 .

Proof. We perform symbolic computations on Mathematica. Below is a summary
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of eigenvalues of G.

• P 1 case

λ0 = −ω2 +
ω6

540
∆x4 +

11ω8

108864
∆x6 +O(∆x8)

λ1 = − 36

∆x2
+O(1)

• P 2 case

λ0 = −ω2 +
ω8

128000
∆x6 +

ω10

8100000
∆x8 +O(∆x10)

λ1,2 =
−78 ± 6

√
69

∆x2
+O(1)

• P 3 case

λ0 = −ω2 − 2.25× 10−8ω10∆x8 − 7.51× 10−11ω12∆x10 +O(∆x12)

λ1 = −438.91

∆x2
+O(1)

λ2 = −46.58

∆x2
+O(1)

λ3 = −34.51

∆x2
+O(1)

It can be checked from above that for k = 1, 2, and 3

R(−ω2 − λ0) = O(∆x2k+2).
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R(λl) < 0, |R(λl)| = O(
1

∆x2
), l = 1, · · · , k.

Remark 4.17. In our symbolic computation, we find that the eigenvalues of the

amplification matrix G for LDG methods are real for k = 1, 2, and 3. However, this

fact is difficult to prove based on equation (4.22).

Remark 4.18. The fact that the other eigenvalues have large negative real part on the

order of 1
∆x2 indicates that the corresponding errors will be damped out exponentially

fast with respect to ∆x over time.

Proposition 4.19. With the same assumption as Proposition 4.16, the eigenvector

V0 corresponding to the physically relevant eigenvalue λ0 approximates û(0) with

order k + 2 at Radau points and with order 2k + 1 at downwind points. The non-

physically relevant eigenvectors Vl, l = 1, · · · , k are of order k + 2 at Radau points.

Proof. We perform symbolic computations on Mathematica. Below is a summary

of our results.

• P 1 case

V0 − û(0) =




− iω3

324
∆x3 +O(∆x4)

iω3

108
∆x3 +O(∆x4)
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V1 =




iω3

324
∆x3 +O(∆x4)

− iω3

108
∆x3 +O(∆x4)




• P 2 case

V0 − û(0) =




−(3 + 8
√
6)ω4

60000
∆x4 +O(∆x5)

−(3− 8
√
6)ω4

60000
∆x4 +O(∆x5)

− iω5

18000
∆x5 +O(∆x6)




V1 =




(207 + 552
√
6 + 162

√
46− 11

√
69)ω4

8280000
∆x4 +O(∆x5)

(207− 552
√
6− 162

√
46 + 11

√
69)ω4

8280000
∆x4 +O(∆x5)

ω4

480
√
69

∆x4 +O(∆x5)




V2 =




(207 + 552
√
6− 162

√
46 + 11

√
69)ω4

8280000
∆x4 +O(∆x5)

(207− 552
√
6 + 162

√
46− 11

√
69)ω4

8280000
∆x4 +O(∆x5)

− ω4

480
√
69

∆x4 +O(∆x5)
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• P 3 case

V0 − û(0) =




1.15× 10−5iω5∆x5 +O(∆x6)

−1.20× 10−5iω5∆x5 +O(∆x6)

6.52× 10−6iω5∆x5 +O(∆x6)

4.05× 10−7iω7∆x7 +O(∆x8)




V1 =




−3.06× 10−6iω5∆x5 +O(∆x6)

−1.20× 10−5iω5∆x5 +O(∆x6)

−7.02× 10−7iω5∆x5 +O(∆x6)

1.19× 10−5iω5∆x5 +O(∆x6)




V2 =




−5.96× 10−6iω5∆x5 +O(∆x6)

1.24× 10−6iω5∆x5 +O(∆x6)

3.40× 10−6iω5∆x5 +O(∆x6)

−4.61× 10−6iω5∆x5 +O(∆x6)
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V3 =




−2.45× 10−6iω5∆x5 +O(∆x6)

1.04× 10−5iω5∆x5 +O(∆x6)

−9.22× 10−6iω5∆x5 +O(∆x6)

−7.31× 10−6iω5∆x5 +O(∆x6)




It can be checked that for k = 1, 2, and 3, V0 approximates û(0) with order 2k + 1

at downwind points and with order k+2 at other Radau points. Vl, l = 1, · · · , k are

of order (k + 2) at Radau points.

Proposition 4.20. Consider LDG methods with polynomial space P k (k=1, 2,

and 3) for the linear parabolic problem (4.8) with uniform mesh. Let u(T ) =

û(0)exp(iωxj − ω2T ) and uh(T ) = û(T )exp(iωxj) be point values of exact and LDG

solutions at shifted Radau points on a cell Ij. Let e = u− uh, then for T > 0,

‖e(T )‖ ≤ C1T∆x2k+2 + C2∆xk+2 + C3exp(−C
T

∆x2
)∆xk+2, (4.23)

where C, C1, C2, and C3 are positive constants independent of ∆x.

Proof. The result can be derived based on Proposition 4.16 and 4.19. The proof is

similar to Proposition 4.5.

Remark 4.21. Similar to the case of DG scheme, the error of the LDG solution can

be decomposed as three parts:

(a) Dissipation error of the physically relevant eigenvalue in the order of 2k + 2;

(b) Projection error ‖u∗−u‖: the numerical solution is much closer to the special
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projection of exact solution denoted as u∗ (‖u∗ − uh‖ = O(∆x2k+2)), than the exact

solution itself (‖u− uh‖ = O(∆xk+2));

(c) Dissipation of non-physically relevant eigenvectors.

Remark 4.22. Based on the error estimate (4.23), one can conclude

(a) when T = o( 1
∆xk ), O(∆xk+2) is the dominant term in (4.23); this term will

not grow with time;

(b) when T = O( 1
∆xk ), O(∆x2k+2)T is the dominant term in (4.23); this term

grows linearly with time and is of order 2k + 2.

As for the DG scheme, it is hard to check numerically the long time behavior

of the error of LDG solutions, we propose to use the following corollary as a way

to numerically assess our theoretical results above. Our numerical results on LDG

method in the next section is based on the following corollary.

Corollary 4.23. Consider LDG methods with polynomial space P k (k = 1, 2, and 3)

for linear parabolic problem (4.8) with uniform mesh. Let T > t and t = O(1), then

‖uh(T )− uh(t)exp(−ω2(T − t))‖ ≤ C1(T − t)∆x2k+2 + C2exp(−
Ct

∆x2
)∆xk+2,

where C, C1, and C2 are positive constants independent of ∆x.
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Proof. The proof is similar to Corollary 4.9.

‖uh(T )− uh(t)exp(−ω2(T − t))‖

= ‖
k+1∑

l=1

(exp(λlT )− exp(λlt− (T − t)ω2))Vl‖

≤ |exp(λ1T )− exp(λ1t− ω2(T − t)))‖V1‖

+‖
k+1∑

l=2

|(exp(λlT )− exp(λlt− ω2(T − t)))|‖Vl‖

≤ |exp(λ1(T − t)− exp(−ω2(T − t)))|exp(λ1t)|‖V1‖

+C2exp(−
Ct

∆x2
)∆xk+2

≤ C1(T − t)∆x2k+2 + C2exp(−
Ct

∆x2
)∆xk+2.

Remark 4.24. Similar to Remark 4.10, let T > t and t = O(1), then

‖e(T )‖ = ‖u(T )− uh(T )‖

= ‖exp(−w2(T − t))u(t)− uh(T )‖

≤ ‖uh(T )− exp(−w2(T − t))uh(t)‖+ |exp(−w2(T − t))|‖u(t)− uh(t)‖

≤ ‖uh(T )− exp(−w2(T − t))uh(t)‖+ ‖u(t)− uh(t)‖.

From Corollary 4.23, the dominant term in ‖uh(2nπ+ t)− exp(−w2(T − t))uh(t)‖ is

order of 2k+2. Thus the error e(T ) of LDG scheme will not grow until T = O( 1
∆xk ).
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4.2.3 Supraconvergence of DG and LDG Schemes

In [120], a so-called supraconvergence property of the DG scheme was studied. It was

discovered that the leading term of the local truncation error for the DG scheme is

first order accurate when piecewise P 1 polynomial is used with basis functions being

Lagrangian interpolant based on uniformly distributed points (i.e. φj− 1
4
and φj+ 1

4
).

In this section, we further study the supraconvergence property of the DG and LDG

scheme based on our analysis for the eigen-structure of amplification matrices G.

Firstly, we look into the DG scheme for the model problem (4.1). Without loss

of generality, we assume that a = 1. Denote D to be the temporal differentiation

operator of û(0) with Dû(0) = −iωû(0). Then the local truncation error denoted as

LTE satisfies

LTE = Dû(0)−Gû(0). (4.24)

Keeping the notation in equation (4.7), we have

LTE = Dû(0)−Gû(0)

= (−iω − λ0)V0 −
k∑

l=1

(λl + iω)Vl.

From our analysis in Section 4.2.1, we have (−iω − λ0)V0 = O(∆x2k+1), (λl + iω) =

O(∆x−1) and Vl = O(∆xk+2) for l ≥ 1 where k = 1, 2, and 3. Thus the LTE based

on shifted Radau points is obtained as:

LTE = O(∆xk+1). (4.25)
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It is observed that, due to our estimate for λl = O(∆x−1) with l ≥ 1, the order of

local truncation error is one order lower than the error in (4.13). Note that the local

truncation error analyzed based on uniformly distributed points [120] is one order

lower than that based on shifted Radau points (4.25). This fact partially explains

the supraconvergence property of DG schemes discussed in [120].

Similar results can be derived for LDG schemes.

LTE = D2û(0)−Gû(0)

= (−ω2 − λ1)V1 −
k+1∑

l=2

(λl + ω2)Vl

= O(∆xk), (4.26)

since −ω2 − λ0 = O(∆x2k+2), (λl + ω2) = O(∆x−2) and Vl = O(∆xk+2) for l ≥ 1,

when k = 1, 2, and 3. The order of local truncation error is two orders lower than the

error in equation (4.23) based on shifted Radau points. Similarly, when uniformly

distributed Lagrangian basis is used, we have LTE = O(∆xk−1).

4.2.4 Fully Discrete RKDG Schemes

An analysis of fully discretized RKDG schemes will be presented below. Without

loss of generality, assume a = 1 in (2.3).

Let ũ be the approximation solution of the fully discretized version of (2.3) ob-

tained by using an explicit RK method of order p [43]. Denote ũh(T ) = ũ
nexp(iωxj)

to be the point values of the solution ũ at shifted Radau points on a cell Ij at time
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T . Then

ũ
n = Rn

û(0), n =
T

∆t
,

with

R = 1 +∆tG +
∆t2

2!
G2 + · · ·+ ∆tp

p!
Gp (4.27)

for an explicit pth order RK method, where the amplification matrix G is defined in

(4.5). Consider the eigen-structure of G = QΛQ−1, where Q = [V1, · · · , Vk+1] is the

matrix with its columns being G’s eigenvectors and Λ = diag(λ1, · · · , λk+1) where

λi, i = 1, · · · , k + 1 are G’s eigenvalues, then

ũ
n =

k+1∑

l=1

(
1 + ∆tλl + · · ·+ ∆tp

p!
λp
l

)n

Vl. (4.28)

Proposition 4.25. With the same assumption as Proposition 4.5. Denote ũh as the

numerical solution of a fully discretized DG scheme with V k
h as the approximation

space and with a pth order RK method. Let ẽ = u− ũh. Then for T > 0, and under

certain linear stability constrain for time step ∆t, we have the error estimate

‖ẽ(T )‖ ≤C1T∆x2k+1 + C2∆xk+2 + C3T∆tp, (4.29)

where C1, C2, and C3 are positive constants independent of ∆x and ∆t. Here ‖ · ‖

can be any norm for vectors.
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Proof.

‖ẽ(T )‖ = ‖u(T )− ũh(T )‖ ≤ ‖u(T )− uh(T )‖+ ‖uh(T )− ũh(T )‖. (4.30)

By Proposition 4.5 with a = 1, we have

‖u(T )− uh(T )‖ ≤ C1T∆x2k+1 + C ′
2∆xk+2, (4.31)

where C1, C
′
2 are positive constants independent of ∆x. We only need to estimate

the second part on the r.h.s. of (4.30). By Equation (4.7) and (4.28), after Taylor

expansion, we have

‖uh(T )− ũh(T )‖ ≤ C‖û(T )− ũ(T )‖ (4.32)

≤ C
k+1∑

l=1

‖exp(λlT )Vl −
k+1∑

l=1

(
1 + λl∆t+ · · ·+ λp

l∆tp

p!

) T
∆t

Vl‖

≤ C

k+1∑

l=1

|exp(λlT )−
(
1 + λl∆t + · · ·+ λp

l∆tp

p!

) T
∆t

|‖Vl‖.

• Firstly, we consider λ1.

|exp(λ1n∆t)− (1 + ∆tλl + · · ·+ ∆tpλp
1

p!
)n|

≤ |exp(λ1∆t)− (1 + ∆tλ1 + · · ·+ ∆tpλp
1

p!
)|

|
n−1∑

m=0

exp(λ1m∆t)(1 + ∆tλ1 + · · ·+ ∆tpλp
1

p!
)n−1−m|

≤ C ′
3T∆tp, (4.33)
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where the last inequality requires the estimate about λ1 from Proposition. 4.1,

|exp(λ1m∆t)| < 1, ∀m.

We also need

|1 + λ1∆t + . . .+
(λ1∆t)p

p!
|m ≤ C ′

3, ∀m ≤ n− 1. (4.34)

To guarantee such inequality, the time step ∆t has to be small enough for

stability. Below, we only consider a simple case to illustrate how time step

restriction is related to the stability, and the equation (4.34). The readers are

referred to [116] for more details.

The RKDG scheme with P 1 and RK2. Denote cfl = ∆t
∆x

and ξ = ω∆x. From

Proposition 4.1, we have

λ0 = −iω − ω4

72
∆x3 − iω5

270
∆x4 +O(∆x5)

= −iω − ξ4

72∆x
− iξ5

270∆x
+O(ξ5).

Then

|1 + λ0∆t+
λ2
0∆t2

2
|2 = |1− icf lξ − cfl2

2
ξ2 − cfl

72
ξ4 +O(ξ5)|2

= |1 + (
cfl4

4
− cfl

36
)ξ4 +O(ξ6)|.
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We require the lead term

cfl4

4
− cfl

36
< 0,

which leads to cfl < 0.48075. Note that this is necessary, but not sufficient

condition to have (4.34) for all ξ ∈ [0, 2π].

• For λl, l ≥ 1. From Proposition 4.1, we have

|exp(λlT )−
(
1 + λl∆t + · · ·+ λp

l∆tp

p!

) T
∆t

|

≤ |exp(λlT )|+ |
(
1 + λl∆t + · · ·+ λp

l∆tp

p!

) T
∆t

|

≤ C l
2, (4.35)

if

|1 + λl∆t + · · ·+ λp
l∆tp

p!
|n ≤ C ′

2. (4.36)

This inequality would be valid only for sufficiently small time step as for λ0.

Below, we use the same example as above to derive a necessary condition for

linear stability.

The RKDG scheme with P 1 and SSPRK(2,2). From Proposition 4.1, we have

λ1 = − 6

∆x
+O(1),

then
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|1 + λ1∆t+
λ2
1∆t2

2
| ≤ |1− 6cfl + 18cfl2|+O(ξ).

To ensure stability, we need

|1− 6cfl + 18cfl2| < 1, i.e., cf l <
1

3
.

Combining the two time step restrictions, we get cfl < 1
3
, which is a necessary

condition for linear stability of the RKDG scheme with P 1 and SSPRK(2,2).

Such time step restriction is consistent with the classical results in [32]. Similar

analysis can be performed for general RKDG methods.

Now we can finish the proof. Under certain linear stability constrain of time step

∆t, we have from the above discussions

‖uh(T )− ũh(T )‖ ≤ C3T∆tp + C
∑

l

C l
2∆xk+2, (4.37)

where C3 = CC ′
3 is a positive constant independent of ∆x and ∆t. Combine (4.30),

(4.31) and (4.37), we derive the final error estimate with C2 = C ′
2 + C

∑
l C

l
2.

Remark 4.26. In the proof, we do not intend to derive a necessary and sufficient

condition of the time step restriction. Related work on this topic can be found [61].

We only assume such time step restriction is satisfied for the linear stability, then

the error estimate for the fully discretized scheme can be derived.

Similarly, an error estimate of a fully discretized LDG scheme with pth order

explicit RK method can also be derived.
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Proposition 4.27. With the same assumption as Proposition 4.20. Denote ũh as the

numerical solution of a fully discretized LDG scheme with V k
h as the approximation

space and pth order RK method and ẽ = u− ũh. Then for T > 0, and under certain

linear stability constrain for time step ∆t, we have the error estimate

‖ẽ(T )‖ ≤C1T∆x2k+2 + C2∆xk+2 + C3T∆tp, (4.38)

where C1, C2, and C3 are positive constants independent of ∆x and ∆t. Here that

‖ · ‖ can be any norm for vectors.

Proof. The proof is similar to Proposition 4.25.

Remark 4.28. For a fully discretized RKDG scheme, the results in Remark 3.8 still

hold, provided the order of RK method p ≥ 2k + 1. If a low order of RK method is

used with ∆t = O(∆x), the error will grow linearly with time, see [24] for a detailed

numerical comparison. In general, in order to study the superconvergence property

of DG and LDG scheme, we use very high order RK method (SSPRK(9,9)) or let

∆t = O(∆x2) to reduce temporal errors.

Numerical Results

Below, we provide a collection of 1-D and 2-D numerical experiments to verify

our theoretical analysis. DG schemes for a one-dimensional linear equation based

on non-uniform meshes, 1-D nonlinear Burgers’ equation, 2-D systems such as wave

equations and Maxwell equations are also investigated to explore superconvergence

properties of DG methods in a more general setting. We do not report DG errors at
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Radau points due to superconvergence properties of physically relevant eigenvectors,

as they have been well documented in [124]. In most of our simulations below, we

use SSPRK(9, 9) for linear problems and use SSPRK(5, 4) for nonlinear problems.

We also reduce the time step size so that the spatial error from DG schemes is the

dominant error. We use Gaussian quadrature rule with k + 1 quadrature points to

compute the volume integral in the DG formulation, which is exact for linear cases

and is of order 2k + 2 for general variable coefficient cases and nonlinear cases. We

use the same quadrature rule to compute the L2 norm of error functions. We remark

that since Gaussian quadrature rule is of order 2k+2 for k+1 Gauss points, (2k+1)th

order of convergence will be able to be maintained numerically.

Example 4.29. Consider a 1-D linear advection equation:





ut + ux = 0, x ∈ [0, 2π],

u(0, x) = sin(x),
(4.39)

with periodic boundary conditions. In order to make the temporal error negligible

compared with the spatial error, we adopt SSPRK(9,9) [43] to solve du/dt = Lu,

where L is the DG discretization operator. Recall that in order to use SSPRK(9,9), L

should be a linear operator. In the simulation, we choose CFL=0.3 for P 1, CFL= 0.2

for P 2 and CFL= 0.1 for P 3.

In this example, we consider two types of DG errors. One is the regular DG error

(e = u− uh), and the other is

ēn = |uh(T = 2π)− uh(T = 2(n + 1)π)|, n ∈ N, (4.40)
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whose order of convergence is 2k + 1 as discussed in Corollary 4.9. In Table 4.1

and 4.2 we report the L2 norm of ē1 and ē2, and the order of accuracy for P 1-P 3.

(2k + 1)th order of accuracy is observed, as expected from Corollary 4.9. It is also

observed that ē2 ≈ 2ē1 indicating the linear growth rate of the error in time. This

is also consistent with the Corollary 4.9. In Figure 4.2, the evolution of L2 norms of

the regular DG errors e(t) and ēn(t) in a log-log scale is provided. The magnitude of

the regular DG error is observed to be much larger than ēn. It is observed that the

regular DG error does not grow for a long time period, while linear growth rate of

the error ēn with respect to time is observed, see Remark 4.10. In Figure 4.3 - 4.5,

we plot the regular errors of DG schemes and the errors ē1 with n = 1 in equation

(4.40) in a logarithmic scale for P 1-P 3. Highly oscillatory nature of DG errors is

observed as in [27]. On the other hand, ē1 does not oscillate as much; the magnitude

of ē1 is much smaller and the order is 2k + 1.

A non-uniform mesh with two different mesh sizes is used to assess supercon-

vergence properties of DG with non-uniform meshes. We set ∆xleft/∆xright = 3/2,

where ∆xleft and ∆xright is the mesh size for the left and right half part of the domain

respectively. In Table 4.3, we report the error ē1. An order of 2k + 1 is observed for

P 1 and P 2 cases, but not for the P 3 case. We remark that in [124], with non-uniform

meshes, (2k + 1)th order of convergence is not observed well at downwind points for

the case of P 3 either. Figure 4.6 shows error ē1 in logarithmic scale for P 1-P 3 when

N = 70. Non-oscillatory errors are observed for P 1 and P 2 even around the inter-

face of different mesh sizes. For P 3, the error is observed to be oscillatory near the

discontinuity of mesh size.
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Table 4.1: Linear advection ut + ux = 0 with initial condition u(0, x) = sin(x). The
L2 norm of ē1 and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20 4.74E-03 – 4.71E-06 – 2.39E-09 –
30 1.41E-03 2.98 6.22E-07 4.99 1.39E-10 7.01
40 5.98E-04 2.99 1.48E-07 5.00 1.86E-11 7.00
50 3.06E-04 3.00 4.84E-08 5.00 3.90E-12 7.00
60 1.77E-04 3.00 1.95E-08 5.00 1.09E-12 7.00

Table 4.2: Linear advection ut + ux = 0 with initial condition u(0, x) = sin(x). The
L2 norm of ē2 and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20 9.47E-03 – 9.42E-06 – 4.76E-09 –
30 2.83E-03 2.98 1.24E-06 4.99 2.79E-10 7.00
40 1.20E-03 2.99 2.96E-07 5.00 3.72E-11 7.00
50 6.13E-04 3.00 9.69E-08 5.00 7.81E-12 7.00
60 3.55E-04 3.00 3.89E-08 5.00 2.18E-12 7.00

Example 4.30. Consider the same advection equation as Example 4.29 but with a

different initial condition:

u(x, 0) = exp(sin(x)). (4.41)

Note that the initial condition contains infinite number of Fourier modes. In Table

4.4, we report the L2 norm of error ē1 and the orders of accuracy. (2k + 1)th order

of accuracy is observed as expected.
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Figure 4.2: DG with P 2, ut + ux = 0, the evolution of L2 norms of regular DG
error and error |ēn|. A reference line with slope 1 is plotted as the reference of linear
growth rate of |ēn| with respect to time. In the simulation, we use RKDG P 2 with
mesh size ∆x = 2π

50
and CFL= 0.2.

Example 4.31. Consider the following linear variable coefficient equation:





ut + (a(x)u)x = b(x, t), x ∈ [0, 2π],

u(x, 0) = sin(x),
(4.42)

with periodic boundary conditions. And a(x) and b(t, x) are given by

a(x) = sin(x) + 2, b(t, x) = (sin(x) + 3) cos(x+ t) + cos(x) sin(x+ t). (4.43)

The exact solution is u(t, x) = sin(x + t). We use SSPRK(5,4) for the temporal

discretization. In the simulation, we let CFL=1
3
for P 1, CFL=1

5
for P 2 and CFL=1

7

for P 3, and time step ∆t = CFL∆x2 to reduce the temporal error. We report the L2

norm of error ē1 as defined in equation (4.40) and numerical orders of accuracy in
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Table 4.3: Linear advection ut + ux = 0 with initial condition u(0, x) = sin(x). The
L2 norm of ē1 and the order of accuracy. Nonuniform mesh with two different mesh
sizes. ∆xleft/∆xright = 3/2.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20 3.37E-03 – 5.61E-06 – 2.45E-08 –
30 1.01E-03 2.98 7.42E-07 4.99 1.49E-09 6.90
40 4.27E-04 2.99 1.76E-07 5.00 2.32E-10 6.46
50 2.19E-04 2.99 5.78E-08 5.00 6.00E-11 6.07
60 1.27E-04 3.00 2.32E-08 5.00 2.03E-11 5.93
70 7.98E-05 3.00 1.07E-08 5.00 2.03E-11 5.95

Table 4.4: Linear advection ut + ux = 0 with initial condition u(0, x) = exp(sin(x)).
The L2 norm of ē1 and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
30 7.80E-03 – 2.68E-05 – 7.08E-08 –
40 3.42E-03 2.86 6.41E-06 4.96 9.54E-09 6.97
50 1.78E-03 2.93 2.11E-06 4.98 2.01E-09 6.98
60 1.04E-03 2.96 8.51E-07 4.99 5.62E-10 6.99
70 6.57E-04 2.97 3.94E-07 4.99 1.91E-10 6.99

Table 4.5. (2k+1)th order of accuracy is observed, although our analysis only works

for the constant coefficient problems.

Example 4.32. Consider the following nonlinear Burgers’ equation with a source

term: 



ut + (u2)x = b(t, x) x ∈ [0, 2π],

u(0, x) = sin(x) + c,
(4.44)
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Figure 4.3: DG with P 1, ut + ux = 0, regular error |u(T = 4π)− uh(T = 4π)| (left);
error |ē1| (right).

with periodic boundary conditions. Here c is a real number and b(t, x) is given by

b(t, x) = cos(x+ t)(2c+ 1 + 2 sin(x+ t)). (4.45)

The exact solution is u(t, x) = sin(x+ t) + c. We use SSPRK(5,4) for the temporal

discretization. In the simulation, we let CFL=1
3
for P 1, CFL=1

5
for P 2 and CFL=1

7

Table 4.5: Linear variable coefficient problem. The L2 norm of ē1 and the orders of
accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20 5.00E-04 – 9.43E-07 – 8.70E-08 –
30 1.68E-04 2.68 1.24E-07 5.00 5.66E-09 6.74
40 7.37E-05 2.87 2.95E-08 5.00 7.42E-10 7.06
50 3.83E-05 2.93 9.67E-09 5.00 1.20E-10 8.17
60 2.23E-05 2.96 3.88E-09 5.00 2.26E-11 9.15
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Figure 4.4: DG with P 2, ut + ux = 0, regular error |u(T = 4π)− uh(T = 4π)| (left);
error |ē1| (right).

for P 3, and time step ∆t = CFL∆x2 to reduce the time errors. Firstly, we let c = 0,

and compute the error ē1. In Table 4.6, the L2 error and the orders of accuracy are

reported. (2k + 1)th order of accuracy is not observed. Note that the wave speed

is 2u, and there exist some regions around which wave travels at very slow speed

(i.e. the region around which u = 0). In these regions, the non-physically relevant

eigenvectors are damped very slowly with time, see the second term on the r.h.s. of

equation (4.14), see also Remark 4.11. (2k+1)th order is not observed numerically. In

Figure 4.7, ē1 in logarithmic scale for P 1 - P 3 cases are plotted when N = 100. It is

observed that ē1 dominates around x = π. Then, we set c = 2. In this case, there is a

positive lower bound on the wave speed. We report the L2 norm of ē1 and numerical

orders of accuracy in Table 4.7. The (2k + 1)th order is observed. In Figure 4.8 -

4.10, we plot the regular errors of DG schemes and ē1 in logarithmic scale for P 1 -

P 3 cases. While highly oscillatory nature of regular errors is observed, ē1 is observed
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Figure 4.5: DG with P 3, ut + ux = 0, regular error |u(T = 4π)− uh(T = 4π)| (left);
error |ē1| (right).

to be much less oscillatory with much smaller magnitude. We remark that although

for the c = 0 case, (2k + 1)th order of accuracy can’t be observed numerically, the

long time behavior of errors as commented in Remark 4.8 still holds.

Example 4.33. We consider the following 1-D system:








u

v




t

+




0 1

1 0







u

v




x

=




0

0


 ,

u(0, x) = sin x,

v(0, x) = cosx,

(4.46)

with periodic boundary conditions. Note that this is a 1-D wave equation written as a

first order hyperbolic linear system. The upwind flux is used for the DG discretization

and SSPRK(9,9) is used for temporal discretization in the simulation. We let CFL=1
3
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Figure 4.6: DG scheme for ut+ux = 0, error |ē1|, non-uniform mesh with two different
mesh sizes, ∆xleft/∆xright = 3/2, N = 70, P 1 (left), P 2 (middle), P 3 (right).

Table 4.6: Burgers’ equation: ut + (u2)x = b(t, x) with initial condition u(0, x) =
sin(x). The L2 norm of ē1 measured from solutions at Gaussian points of each cell
and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
50 1.30E-07 – 8.34E-09 – 1.93E-10 –
60 9.21E-08 1.91 3.96E-09 4.08 1.10E-10 3.09
70 6.79E-08 1.98 1.85E-09 4.95 5.95E-11 3.98
80 5.23E-08 1.95 1.13E-09 3.69 4.00E-11 2.97
90 4.18E-08 1.90 4.76E-10 7.34 2.75E-11 3.19
100 3.43E-08 1.88 3.29E-10 3.48 1.80E-11 4.00

for P 1, CFL=1
5
for P 2, and CFL=1

7
for P 3. We report the L2 norm of ē1 and the

orders of accuracy for the u variable in Table 4.8. (2k + 1)th order is observed.

Example 4.34. We consider the following 1-D heat equation:





ut = uxx, x ∈ [0, 2π],

u(0, x) = sin(x),
(4.47)

180



4.2. EIGEN-STRUCTURES OF G: ERROR ESTIMATE

x

er
ro

r

1 2 3 4 5 6

-11

-10

-9

-8

-7

-6

P1

x
er

ro
r

1 2 3 4 5 6

-14

-13

-12

-11

-10

-9

-8

P2

x

er
ro

r

1 2 3 4 5 6

-15

-14

-13

-12

-11

-10

-9

P3

Figure 4.7: DG scheme for Burgers’ equation with initial condition u(0, x) = sin(x),
error ē1, N = 100, P 1 (left), P 2 (middle), P 3 (right).

Table 4.7: Nonlinear Burgers’ equation: ut + (u2)x = b(t, x) with initial condition
u(0, x) = sin(x) + 2. The L2 norm of ē1 measured from solutions at Gaussian points
of each cell and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
50 3.64E-05 – 6.61E-09 – 1.76E-12 –
60 2.11E-05 2.98 2.66E-09 5.00 2.53E-13 10.64
70 1.33E-05 2.99 1.23E-09 5.00 7.45E-14 7.92
80 8.93E-06 2.99 6.30E-10 5.00 2.88E-14 7.12
90 6.27E-06 2.99 3.50E-10 5.00 1.26E-14 7.03
100 4.57E-06 3.00 2.06E-10 5.00 6.01E-15 7.02

with periodic boundary conditions. The exact solution of (4.47) is

u(t, x) = exp(−t) sin x.

We use a LDG method with SSPRK(9,9) temporal discretization to solve the equa-

tion. In the simulation, we use CFL=0.01 and ∆t = CFL∆x2. We let uh denote the

numerical solution for u and ph denote that for the derivative ux. We compare the
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Figure 4.8: DG with P 1; Burgers’ equation with initial condition u(0, x) = sin(x)+2;
regular error |u(T = 4π)− uh(T = 4π)| (left); |ē1| (right).

the error

ẽ1 = exp(−1)uh(T = 1)− uh(T = 2), (4.48)

and

ẽ2 = exp(−1)ph(T = 1)− ph(T = 2). (4.49)

In Table 4.9 and Table 4.10, we report the L2 norm and orders of accuracy of error

Table 4.8: The linear system (4.46). The L2 norm of ē1 and the orders of accuracy
for variable u. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
30 6.52E-04 – 3.38E-07 – 8.58E-11 –
40 2.80E-04 2.94 8.11E-08 4.86 1.15E-11 6.99
50 1.45E-04 2.96 2.67E-08 4.97 2.42E-12 6.98
60 8.43E-05 2.97 1.08E-08 4.98 6.78E-13 6.98
70 5.33E-05 2.97 5.00E-09 4.98 2.31E-13 6.99
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Figure 4.9: DG with P 2; Burgers’ equation with initial condition u(0, x) = sin(x)+2,
regular error |u(T = 4π)− uh(T = 4π)| (left); |ē1| (right).

ẽ1 and error ẽ2, respectively. (2k + 2)th order of accuracy is observed as expected

from Corollary 4.23. In Figure 4.11 - 4.13, we plot the regular errors of LDG schemes

and the errors ẽ1 in logarithmic scale for P 1-P 3. Regular errors are observed to be

highly oscillatory, while ẽ1 is much less oscillatory with much smaller magnitude.

Table 4.9: Heat equation ut = uxx. The L2 norm and orders of accuracy of ẽ1.
Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
10 3.99E-05 – 8.15E-08 – 1.04E-10 –
20 2.45E-06 4.02 1.27E-09 6.01 4.08E-13 8.00
30 4.83E-07 4.01 1.11E-10 6.00 1.59E-14 8.00
40 1.53E-07 4.00 1.98E-11 6.00 1.60E-15 8.00
50 6.26E-08 4.00 5.18E-12 6.00 2.68E-16 8.00

183



4.2. EIGEN-STRUCTURES OF G: ERROR ESTIMATE

x

e

1 2 3 4 5 6
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

N=10
N=20
N=40
N=80
N=160

P3

x

e

1 2 3 4 5 6
-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

N=10
N=20
N=40
N=80
N=160

P3

Figure 4.10: DG with P 3; Burgers’ equation with initial condition u(0, x) = sin(x)+2;
regular error |u(T = 4π)− uh(T = 4π)| (left); |ē1| (right).

Example 4.35. We consider the following 2-D advection equation:





ut + ux + uy = 0, (x, y) ∈ [0, 2π]× [0, 2π],

u(0, x, y) = sin(x+ y),
(4.50)

with periodic boundary conditions in both x− and y− directions. The exact solution

Table 4.10: Heat equation ut = uxx. The L2 norm of ẽ2 and the orders of accuracy.
Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
10 4.08E-05 – 8.15E-08 – 1.04E-10 –
20 2.47E-06 4.05 1.27E-09 6.01 4.08E-13 8.00
30 4.85E-07 4.01 1.11E-10 6.00 1.59E-14 8.00
40 1.53E-07 4.01 1.98E-11 6.00 1.60E-15 8.00
50 6.26E-08 4.00 5.18E-12 6.00 2.68E-16 8.00
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Figure 4.11: LDG with P 1; diffusive equation; regular error |u(T = 2)− uh(T = 2)|
(left); |ẽ1| (right)

of (4.50) is

u(t, x, y) = sin(x+ y − 2t).

Firstly, we use DG with the Qk space as the approximation space, see equation (4.16).

We compute the error

ē1 = uh(T = π)− uh(T = 2π). (4.51)

In Table 4.11, we report the L2 norm of ē1 and the orders of accuracy. (2k + 1)th

order of accuracy is observed. We choose CFL= 0.1. Then, we use DG with the P k

space, see equation (4.21). We give the L2 norm of ē1 and the orders of accuracy in

Table 4.12. Again (2k + 1)th order of accuracy is observed. The magnitude of error

appears to be larger than those from DG scheme with a Qk space. In Figure 4.14,

the DG error in 3-D and contour plot are reported.
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Figure 4.12: LDG with P 2; diffusive equation; regular error |u(T = 2)− uh(T = 2)|
(left); |ẽ1| (right)

Example 4.36. We consider the solid body rotation problem:

ut − yux + xuy = 0, (x, y) ∈ [−π, π]× [−π, π], (4.52)

Table 4.11: 2-D advection equation ut + ux + uy = 0. Qk is used. The L2 norm of ē1
and the orders of accuracy. Uniform mesh.

Q1 Q2 Q3

mesh L2 error order L2 error order L2 error order
30× 30 3.55E-03 – 1.56E-06 – 4.62E-10 –
40× 40 1.50E-03 2.99 3.70E-07 5.00 4.75E-11 7.90
50× 50 7.68E-04 3.00 1.21E-07 5.00 9.79E-12 7.08
60× 60 4.45E-04 3.00 4.88E-08 5.00 2.73E-12 7.00
70× 70 2.80E-04 3.00 2.26E-08 5.00 9.28E-13 7.01
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Figure 4.13: LDG with P 3; diffusive equation; regular error |u(T = 2)− uh(T = 2)|
(left); |ẽ1| (right)

with the following smooth initial condition:

u(0, x, y) =





cos12(r) r < π
2
,

0 otherwise,
(4.53)

where r =
√
(x− π/2)2 + y2. Recall that we use the hybrid scheme to solve the solid

Table 4.12: 2-D advection equation ut + ux + uy = 0. P k is used. The L2 norm of ē1
and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
30× 30 1.40E-02 – 2.22E-05 – 1.71E-08 –
40× 40 5.96E-03 2.97 5.29E-06 4.99 2.28E-09 7.01
50× 50 3.06E-03 2.98 1.74E-06 4.99 4.77E-10 7.00
60× 60 1.77E-03 2.99 6.98E-07 5.00 1.33E-10 7.00
70× 70 1.12E-03 2.99 3.23E-07 5.00 4.52E-11 7.01
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Figure 4.14: DG with P 3; 2-D linear advection equation ut+ux+uy = 0; Nx×Ny =
10× 10; 3-D plot of error e = u(T = 4π)− uh(T = 4π) (left); Contour of error error
e = u(T = 4π)− uh(T = 4π) (right)

body rotation problem in Example 3.7. As before, we calculate the error

ē1 = uh(T = 2π)− uh(T = 4π).

In the simulation, we adopt the approximation space P k for spatial discretization

and SSPRK(5,4) for temporal discretization. We choose CFL=0.1. In Table 4.13,

we report L2 norm of ē1 and the orders of accuracy. (2k+1)th order is observed. Note

that the mesh has to be fine enough to resolve the ‘cosine bell’ in order to observe a

clean order of accuracy. Also note that the ‘cosine bell’ is centered at (π/2, 0), which

is away from the origin. Around the origin, the propagation speed (−y, x) is close

to zero. In such situation, the second term on the r.h.s. of Corollary 4.14 might

dominate and (2k+ 1)th order can’t be observed. We omit to present the results for

brevity. Again, we remark that the long time behavior of the error as commented in
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Remark 4.8 still holds if the ‘cosine bell’ is positioned around the origin.

Table 4.13: Solid body rotation: ut − yux + xuy = 0. P k is used. The L2 norm of ē1
and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
100× 100 9.98E-03 – 3.77E-05 – 9.33E-08 –
120× 120 6.22E-03 2.59 1.53E-05 4.95 2.62E-08 6.97
140× 140 4.09E-03 2.72 7.11E-06 4.97 8.94E-09 6.97
160× 160 2.81E-03 2.81 3.66E-06 4.98 3.52E-09 6.98
180× 180 2.01E-03 2.86 2.04E-06 4.98 1.55E-09 6.99
200× 200 1.48E-03 2.89 1.20E-06 4.99 7.40E-10 6.99

Example 4.37. We consider the following 2-D linear system:








u

v




t

+




−1 0

0 1







u

v




x

+




0 −1

−1 0







u

v




y

=




0

0


 ,

u(0, x, y) = 1
2
√
2
sin (x+ y)− 1

2
√
2
cos (x+ y),

v(0, x, y) =
√
2−1
2
√
2
sin (x+ y) +

√
2+1
2
√
2
cos (x+ y),

(4.54)

with periodic boundary conditions in both x− and y− directions. Note that this is

the second order wave equation written as a first order linear hyperbolic system and

the exact solution is





u(t, x, y) = 1
2
√
2
sin (x+ y +

√
2t)− 1

2
√
2
cos (x+ y −

√
2t),

v(t, x, y) =
√
2−1
2
√
2
sin (x+ y +

√
2t) +

√
2+1
2
√
2
cos (x+ y −

√
2t).

(4.55)
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We remark that the two matrices in equation (4.54) don’t commute, therefore the

linear system can’t be reduced to 2-D scalar problems. In the simulation, the upwind

flux and the SSPRK(9,9) scheme is used. We choose CFL=0.1. Note that the period

of the solution in time is
√
2π, that is u(t, x, y) = u(t+

√
2π, x, y), then we let

ē1 = uh(T = 2)− uh(T = 2 +
√
2π). (4.56)

In Table 4.14, we report L2 norm of ē1 and the orders of accuracy. (2k + 1)th

order is observed. The error about the v variable is not presented for brevity since

it gives almost the same results.

Table 4.14: Two-dimensional linear system (4.54). P k is used. The L2 norm of ē1
and the orders of accuracy. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
30× 30 1.26E-02 – 1.40E-05 – 2.09E-08 –
40× 40 5.34E-03 2.97 3.33E-06 4.99 2.51E-09 7.37
50× 50 2.74E-03 2.99 1.09E-06 4.99 4.31E-10 7.91
60× 60 1.59E-03 2.99 4.40E-07 4.99 1.14E-10 7.27
70× 70 1.00E-03 3.00 2.04E-07 5.00 3.80E-11 7.14

Example 4.38. We consider the 2-D Maxwell equations:





∂Hx

∂t
+

∂Ez

∂y
= 0,

∂Hy

∂t
− ∂Ez

∂x
= 0,

∂Ez

∂t
− ∂Hy

∂x
+

∂Hx

∂y
= 0.

(4.57)
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Note that the Maxwell equations are linear hyperbolic systems, which can be written

as

Ut + AUx +BUy = 0, (4.58)

where

A =




0 0 0

0 0 −1

0 −1 0




, B =




0 0 1

0 0 0

1 0 0




. (4.59)

For any unit vector n = (n1, n2), let

D = n1A+ n2B. (4.60)

Note that D always has three eigenvalues 1, -1 and 0 given a unit vector n. It is easy

to check that 



Hx(t, x, y) = −β cos(αx+ βy + t),

Hy(t, x, y) = α cos(αx+ βy + t),

Ez(t, x, y) = cos(αx+ βy + t),

(4.61)

is an exact solution of Maxwell equations for (x, y) ∈ [0, 2π/α] × [0, 2π/β], where

α2+β2 = 1. This example is motivated by the work in [25], where the DG error after

applying a post-processing technique are enhanced from (k+1)th order to (2k+1)th

order. In the simulation, we take α = β =
√
2
2
. The upwind flux and the SSPRK(9,9)
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scheme is used. We choose CFL= 0.1. Let

ē1 = (Ez)h(T = 4π)− (Ez)h(T = 2π),

ē2 = (Hx)h(T = 4π)− (Hx)h(T = 2π),

ē3 = (Hy)h(T = 4π)− (Hy)h(T = 2π).

In Table 4.15, we report L2 norm of ē1 and the orders of accuracy. The (2k+1)th order

of accuracy is numerically observed for the P 1 and P 2 cases, but not for the P 3 case.

In Table 4.16, we report L2 norm of ē2 and the orders of accuracy. (2k+1)th order of

accuracy is not observed for the P 2 and P 3 cases. The reason we suspect is that there

is one zero eigenvalue in D, along which the non-physically relevant eigenvectors are

not damped. In Figure 4.15, contours of ē2 and ē3 are plotted, for the DG with P 3

space. It is clear that ē2 oscillates only in the x−direction and ē3 oscillates only in the

y−direction. Such observation suggests that the non-physically relevant eigenvectors

of (Hx)h (or (Hy)h) do not damp in x− (or y−) direction properly. We remark that

although (2k + 1)th order can’t be observed for ē2 and ē3. The DG solution can still

be post-processed to attain (2k + 1)th order convergence as in [25]. The long time

behavior of the magnitude of errors as commented in Remark 4.8 might still hold.
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Table 4.15: Two-dimensional Maxwell equations. P k is used. The L2 norm and
orders of accuracy of ē1 of Ez. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20× 20 6.82E-02 – 2.49E-04 – 5.49E-07 –
30× 30 2.09E-02 2.92 3.34E-05 4.96 4.92E-08 5.95
40× 40 8.91E-03 2.96 7.97E-06 4.98 9.65E-09 5.66
50× 50 4.58E-03 2.98 2.62E-06 4.98 2.75E-09 5.62
60× 60 2.66E-03 2.99 1.06E-06 4.99 9.84E-10 5.65

Table 4.16: Two-dimensional Maxwell equations. P k is used. The L2 norm and
orders of accuracy of ē2 of Hx. Uniform mesh.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20× 20 4.88E-02 – 4.00E-04 – 1.02E-05 –
30× 30 1.51E-02 2.89 1.08E-04 3.23 1.97E-06 4.06
40× 40 6.54E-03 2.92 4.12E-05 3.35 5.69E-07 4.32
50× 50 3.40E-03 2.93 1.90E-05 3.47 2.10E-07 4.47
60× 60 1.99E-03 2.94 9.93E-06 3.56 9.12E-08 4.57

193



4.2. EIGEN-STRUCTURES OF G: ERROR ESTIMATE

x

y

0 2 4 6 8
0

2

4

6

8

3.8E-06
3.2E-06
2.6E-06
2E-06
1.4E-06
8E-07
2E-07

-4E-07
-1E-06
-1.6E-06
-2.2E-06
-2.8E-06
-3.4E-06
-4E-06

Error

Error of Hx;  P3

x

y

0 2 4 6 8
0

2

4

6

8

3.8E-06
3.2E-06
2.6E-06
2E-06
1.4E-06
8E-07
2E-07

-4E-07
-1E-06
-1.6E-06
-2.2E-06
-2.8E-06
-3.4E-06
-4E-06

Error

Error of Hy;  P3

Figure 4.15: DG with P 3 for Maxwell equations; Contour of error ē2 = (Hx)h(T =
4π)− (Hx)h(T = 2π) (left); Contour of error ē3 = (Hy)h(T = 4π)− (Hy)h(T = 2π)
(right)
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4.3 A New LWDG Scheme with Superconvergence

As an alternative of using high order SSP RK methods to discretize the time vari-

able, the one-step one-stage high order LW time discretization [63] attracts lots of

attentions due to its compactness and low-storage requirement [88, 89]. The LW

procedure is known as the Cauchy-Kowalewski type time discretization in the litera-

ture, which relies on converting each time derivative in a truncated temporal Taylor

expansion (with expected accuracy) of the solution into spatial derivatives by re-

peatedly using the underlying differential equation and its differentiated forms. The

original LWDG scheme is proposed by Qiu et al. in [88] for hyperbolic conservation

laws and extended to Hamilton-Jacobi equations in [45]. In this section, we would

like to investigate superconvergence properties of the LWDG scheme. The numerical

results documented in [27, 15] indicates that the RKDG scheme exhibits supercon-

vergence properties if the spatial error dominates, whereas the results reported below

show that such superconvergence can not be observed numerically for the original

LWDG schemes in [88].

In order to restore superconvergence in the LWDG framework, we modify the

original scheme by borrowing techniques from the LDG scheme. In particular, the

high order spatial derivatives in the LW procedure are reconstructed through a LDG

formulation, while they are obtained by direct differentiation of the numerical so-

lution for the original LWDG scheme. In addition, for the newly proposed LWDG

scheme, flux terms appeared in the LDG framework provide extra freedom to design
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appropriate numerical fluxes for numerical stability. Numerical experiments demon-

strate that the modified LWDG scheme is stable and high order accurate. Moreover,

it is observed that the proposed scheme displays similar superconvergence properties

as a RKDG scheme. In order to theoretically reveal superconvergence of the new

LWDG scheme, we follow the analysis in Section 4.1 to study the eigen-structures of

the amplification matrix in the Fourier analysis framework. In [116], the dispersion

and dissipation error analysis for the original LWDG scheme is provided.

4.3.1 Lax-Wendroff Type Time Discretization

The LW time discretization, as an alternative to the method-of-line RK time dis-

cretization, was proposed for the DG scheme in [88]. We consider the 1-D hyperbolic

conservation law (2.1). The formulation of LW type time discretization starts with

a Taylor expansion in time for the solution u. For example, for third order temporal

discretization, we have

u(x, t+∆t) ≈ u(x, t) + ∆tut(x, t) +
∆t2

2
utt(x, t) +

∆t3

6
uttt(x, t). (4.62)

The temporal derivatives in (4.62) are then converted into spatial derivatives via the

original differential equation (2.1) and its differentiated versions:

ut = −f(u)x, (4.63)

utt = (f ′(u)f(u)x)x , (4.64)

uttt = −
(
f ′′(u) (f(u)x)

2 + f ′(u) (f ′(u)f(u)x)x
)
x
. (4.65)

196



4.3. A NEW LWDG SCHEME WITH SUPERCONVERGENCE

Substituting (4.63)-(4.65) into (4.62) gives

u(t+∆t, x) ≈u(t, x)−∆t

(
f(u)− ∆t

2
f ′(u)f(u)x

+
∆t2

6

(
f ′′(u) (f(u)x)

2 + f ′(u) (f ′(u)f(u)x)x
))

x

(4.66)

=u(t, x)−∆tF (∆t, u)x, (4.67)

where

F = f(u)− ∆t

2
f ′(u)f(u)x +

∆t2

6

(
f ′′(u) (f(u)x)

2 + f ′(u) (f ′(u)f(u)x)x
)

(4.68)

is a new flux function. The LWDG formulation is defined based on (4.66) as follows:

given un
h ∈ V k

h , find un+1
h ∈ V k

h such that ∀v ∈ V k
h , we have

ˆ

Ij

un+1
h v dx =

ˆ

Ij

un
hv dx+∆tn

(
ˆ

Ij

F (un
h,∆tn)vx dx− F̂j+ 1

2
v−
j+ 1

2

+ F̂j− 1
2
v+
j− 1

2

)
,

(4.69)

for j = 1, · · · , N and n = 0, 1, . . .. Here un
h approximates the solution of (2.1) at

time tn, and ∆tn = tn+1 − tn. The numerical flux F̂j+ 1
2
is defined as

F̂j+ 1
2
=

1

2

((
F ((un

h)
+
j+ 1

2

,∆tn) + F ((un
h)

−
j+ 1

2

,∆tn)
)
− α

(
(un

h)
+
j+ 1

2

− (un
h)

−
j+ 1

2

))
,

(4.70)

where α = maxu |f ′(u)| with the maximum taken in the computational domain [a, b].

Here f(un
h)x and (f ′(un

h)f(u
n
h)x)x in F (4.68) are obtained by direct differentiation of
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the numerical solution, i.e.,

f(un
h)x = f ′(un

h)(u
n
h)x, (f ′(un

h)f(u
n
h)x)x = f ′(un

h)(2f
′′(un

h)(u
n
h)

2
x + f ′(un

h)(u
n
h)xx).

Note that the numerical flux F̂j+ 1
2
is very similar to the Lax-Friedrichs flux given in

Section 2.1.

4.3.2 Numerical Evidences Regarding Superconvergence

In this subsection, we assess the numerical performance of the corresponding prop-

erties for the LWDG schemes (4.69) proposed in [88].

Enhanced Accuracy by Post-Processing

It has been proved in [27] that a semi-discrete DG solution for a linear hyperbolic

equation is superconvergent in the negative-order norms with order of 2k+1 assuming

that the solution is globally smooth. Because of this, the order convergence can

be enhanced from (k + 1)th order to (2k + 1)th order by applying a post-processor

[10], when the mesh is translation invariant. Specifically, such better approximated

solution u⋆
h is obtained by convolving the numerical solution with a convolution kernel

Kh that is a linear combination of B-splines [10, 27],

u⋆
h = Kh ⋆ uh. (4.71)

Along this line, a similar estimation of the LDG scheme for solving linear convection-

diffusion equations was given in [57], and of the DG scheme for solving nonlinear
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scalar hyperbolic conservation laws was provided in [58]. The numerical results

reported in [27] show that the (2k + 1)th order of convergence is achieved, when a

high order SSP RK scheme is used for time discretization. Note that the time step

∆t is chosen small enough such that the spatial error dominates.

Now, we study the convergence property of the post-processed solutions for the

LWDG scheme (4.69) with numerical flux specified in equation (4.70) for the following

linear advection problem:

ut + ux = 0, x ∈ [0, 2π], (4.72)

u(t = 0, x) = sin x,

with periodic boundary conditions. In particular, we use the LWDG scheme (4.69)

to solve the model problem and post-process the numerical solution at final time

step. The numerical mesh is set to be uniform. The numerical solution is computed

up to time T=1 and we let ∆t = CFL∆x with CFL=0.01, thereby making the the

spatial error dominant. In Table 4.17, we report the L2 and L∞ errors and the orders

of accuracy, before and after applying the post-processing procedure. It is observed

that the magnitude of numerical errors is reduced by applying the post-processor,

however the order of accuracy remains k + 1.

Long Time Behavior of Errors

It is discovered that the DG errors do not significantly grow over a very long time

period [15]. Such behavior of errors could be explained by the superconvergence of the

DG solution in approximating the Radau projection of the exact solution [15, 17, 117].
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Table 4.17: Linear advection. LWDG scheme in [88]. T=1. CFL=0.01.

Before post-processing After post-processing

mesh L
2 error order L

∞ error order L
2 error order L

∞ error order

20 4.21E-03 – 1.34E-02 – 3.77E-04 – 5.37E-04 –

40 1.06E-03 1.99 3.45E-03 1.96 4.49E-05 3.07 6.27E-05 3.10

P
1 60 4.72E-04 2.00 1.54E-03 1.98 1.38E-05 2.91 1.92E-05 2.92

80 2.65E-04 2.00 8.71E-04 1.99 6.24E-06 2.76 8.63E-06 2.77

100 1.70E-04 2.00 5.58E-04 1.99 3.47E-06 2.62 4.79E-06 2.64

20 1.02E-04 – 3.50E-04 – 4.25E-06 – 6.03E-06 –

40 1.28E-05 3.00 4.41E-05 2.99 2.67E-07 3.99 3.78E-07 4.00

P
2 60 3.79E-06 3.00 1.31E-05 3.00 7.06E-08 3.28 9.99E-08 3.28

80 1.60E-06 3.00 5.51E-06 3.00 2.89E-08 3.11 4.09E-08 3.11

100 8.18E-07 3.00 2.82E-06 3.00 1.46E-08 3.05 2.07E-08 3.05

20 2.12E-06 – 4.81E-06 – 8.76E-08 – 1.20E-07 –

40 1.32E-07 4.00 3.48E-07 3.82 2.74E-09 5.00 3.52E-09 5.09

P
3 60 2.59E-08 4.02 6.74E-08 4.02 5.36E-10 4.02 6.88E-10 4.03

80 8.22E-09 3.99 2.13E-08 4.02 1.70E-10 4.00 2.18E-10 4.00

100 3.37E-09 4.00 8.75E-09 3.99 6.96E-11 3.99 8.93E-11 3.99

In particular, numerical analysis for solving the linear advection equation (4.72) in

[117] shows that the Radau projection of the exact solution Pu satisfies

‖Pu− uh‖ ≤ C1∆xk+2.

It leads to the following error estimation:

‖e‖ ≤ C0∆xk+1 + TC1∆xk+2, (4.73)

where C0 and C1 are positive constant. Note that the first term, which is independent

of time, will dominate the error until T = O(1/∆x). In Section 4.1, an optimal error

estimation was obtained via Fourier analysis. If the mesh is assumed to be uniform

and the boundary condition is periodic, the numerical error by a DG scheme (when
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k = 1, 2, and 3) for the linear advection equation (4.76) can be decomposed into

three parts:

‖e‖ ≤ C0∆xk+1 + TC1∆x2k+1 + C2 exp

(
−CT

∆x

)
∆xk+1, (4.74)

where C0, C1, C2, and C are positive constant. The claim indicates that the error

does not significantly grow until T= O(1/∆xk). See Proposition 4.5.

We use the model problem (4.76) to compare the LWDG scheme with the RKDG

scheme in the context of the long time behavior of numerical errors. We use P 2 as

the approximation space, and adopt the third order LW procedure for the LWDG

scheme and the SSPRK(3,3) method for the RKDG scheme. Note that both schemes

are third order accurate in space and time. Let N = 50 and CFL=0.01. We compute

the numerical solutions using the two types of DG schemes up to time T = 500, and

plot the time evolution history of the L2 errors in Figure 4.16. It is observed that

the numerical error by the RKDG scheme does not significantly grow for a long time

simulation. In fact, the magnitude of error at T = 500 is comparable to that at the

very beginning of the simulation. Contrarily, the error by the LWDG scheme begins

to noticeably grow around T=20, and the growth rate is observed to be linear after

some time.

In Section 4.1, the following error is defined and studied for the DG scheme:

ē = uh(t = 2π)− uh(t = 4π). (4.75)

It is also shown in Section 4.1 that the error ē by a RKDG scheme (when k = 1, 2, 3)
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Figure 4.16: Long time behavior of errors. 1-D linear advection. RKDG P 2 scheme
versus new LWDG P 2 scheme. CFL=0.01.

is in the order of 2k + 1 for spatial accuracy. Here, we check the error ē for the

LWDG scheme when solving the model equation (4.72). In Table 4.18, we report

the L2 norms of error ē and orders of accuracy. Only (k + 1)th order of accuracy is

observed for the LWDG scheme.

Table 4.18: Linear advection. Original LWDG scheme in [88]. The L2 norms of error
ē and the order of accuracy. CFL=0.01.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20 1.94E-03 – 1.32E-05 – 2.74E-07 –
40 2.57E-04 2.91 1.48E-06 3.16 1.71E-08 4.00
60 8.24E-05 2.81 4.29E-07 3.05 3.39E-09 4.00
80 3.80E-05 2.69 1.79E-07 3.03 1.07E-09 3.99
100 2.14E-05 2.57 9.15E-08 3.02 4.36E-10 4.05

In summary, several superconvergence properties of a semi-discrete DG scheme,
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including accuracy enhancement by post-processing and long time behaviors of errors,

are maintained by the a discrete RKDG scheme, whereas they are not numerically

observed when the original LW temporal discretization [88] is used. In the next

subsection, we propose a new LWDG scheme, which aims to restore superconvergence

properties mentioned above.

4.3.3 A New LWDG Scheme

In the subsection, we formulate a new LWDG scheme for solving linear and nonlinear

hyperbolic conservation laws. Some stability issues will be discussed.

Linear Advection Equations

Firstly, we consider the linear advection equation

ut + ux = 0. (4.76)

As the original LWDG scheme, we start with the Taylor expansion of the solution in

time as in equation (4.62) for achieving third order temporal accuracy. By repeatedly

using the underlying differential equation (4.76) and its differentiation versions, we

obtain

u(t+∆t) ≈ u(t)−∆tux +
∆t2

2
uxx −

∆t3

6
uxxx. (4.77)

Note that the original LWDG formulation uses direct differentiation of the solution

to obtain high order spatial derivatives. However, in the new formulation, we propose
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to use the LDG techniques to reconstruct high order derivatives instead. To illustrate

the idea of using an LW time discretization procedure in the LDG framework, we

consider solving the following PDE by an LDG scheme:

ut = ǫ1ux + ǫ2uxx + ǫ3uxxx, (4.78)

where ǫ1 < 0, ǫ2 > 0, and ǫ3 < 0 are constant. Two auxiliary variables are introduced,

p = ux, q = px.

The corresponding semi-discrete LDG scheme is to find uh, ph, qh ∈ V k
h such that

∀v, w, s ∈ V k
h , we have

d

dt

ˆ

Ij

uhv dx =−
ˆ

Ij

(ǫ1uh + ǫ2ph + ǫ3qh)vx dx+ (ǫ1(ûh)j+ 1
2
+ ǫ2(p̂h)j+ 1

2

+ ǫ3(q̂h)
n
j+ 1

2
)v−

j+ 1
2

− (ǫ1(ûh)j− 1
2
+ ǫ2(p̂h)j− 1

2
+ ǫ3(q̂h)j− 1

2
)v+

j− 1
2

,
ˆ

Ij

phw dx =−
ˆ

Ij

uhwx dx+ (ũh)j+ 1
2
w−

j+ 1
2

− (ũh)j− 1
2
w+

j− 1
2

, (4.79)

ˆ

Ij

qhs dx =−
ˆ

Ij

phsx dx+ (p̃h)j+ 1
2
s−
j+ 1

2

− (p̃h)j− 1
2
s+
j− 1

2

,

for j = 1, . . . , N . Here uh, ph and qh approximate the solution, and its first and

second order spatial derivatives of (4.78), respectively. ûh, ũh, p̂h, p̃h, and q̂h are

numerical fluxes chosen according to stability consideration as in [30, 115]:

ûh = u−
h , p̂h = p+h , ũh = u−

h , q̂h = qh, p̃h = p.h (4.80)
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Similar to the semi-discrete LDG scheme for solving the convection-diffusion equa-

tions [30] and KdV-type equations [115], we have the following proposition:

Proposition 4.39. The semi-discrete LDG scheme (4.79) equipped with the alter-

nating numerical fluxes (4.80) is L2 stable.

Proof. The proof is similar to that in [115], thus omitted for brevity.

Based on the semi-discrete LDG scheme (4.79) for equation (4.78), we define the

new LWDG formulation as follows: given un
h ∈ V k

h , find pnh, qnh , and un+1
h ∈ V k

h such

that ∀v, w, and s ∈ V k
h , we have

ˆ

Ij

un+1
h vdx =

ˆ

Ij

un
hvxdx+∆t

(
ˆ

Ij

(un
h −

∆t

2
pnh +

∆t2

6
qnh)vxdx (4.81)

− ((ûn
h)j+ 1

2
− ∆t

2
(p̂nh)j+ 1

2
+

∆t2

6
(q̂nh)j+ 1

2
)v−

j+ 1
2

+((ûn
h)j− 1

2
− ∆t

2
(p̂nh)j− 1

2
+

∆t2

6
(q̂nh)j− 1

2
)v+

j− 1
2

)
,

ˆ

Ij

pnhwdx =−
ˆ

Ij

un
hwxdx+ (ũn

h)j+ 1
2
w−

j+ 1
2

− (ũn
h)j− 1

2
w+

j− 1
2

, (4.82)

ˆ

Ij

qnhsdx =−
ˆ

Ij

pnhsxdx+ (p̃nh)j+ 1
2
s−
j+ 1

2

− (p̃nh)j− 1
2
s+
j− 1

2

, (4.83)

for j = 1, . . . , N and n = 0, 1, . . .. Here un
h, p

n
h, and qnh approximate the solution, and

its first and second order spatial derivatives of (4.76) at time tn, respectively. ûn
h,

ũn
h, p̂

n
h, p̃

n
h, and q̂nh are the numerical fluxes chosen as (4.80). Note that the proposed

LWDG scheme (4.81) is formulated by applying the forward Euler time discretization

to the semi-discrete LDG scheme (4.79) with ǫ1 = −∆t, ǫ2 =
∆t2

2
, and ǫ3 = −∆t3

6
.
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Nonlinear Scaler Conservation Laws

Now, we consider a 1-D nonlinear scaler hyperbolic conservation law (2.1). Similar

to the linear case, we start with the Taylor expansion of the solution, i.e., equation

(4.62). Again, in order to formulate a new LWDG scheme, we first consider the

following PDE:

ut = ǫ1f(u)x + ǫ2 (f
′(u)f(u)x)x , (4.84)

where ǫ1 < 0 and ǫ2 > 0 are constant. By introducing the auxiliary variable

p = f(u)x,

we define the corresponding semi-discrete LDG scheme for equation (4.84): find

uh, ph ∈ V k
h such that ∀v, w ∈ V k

h , we have

d

dt

ˆ

Ij

uhvdx =−
ˆ

Ij

(ǫ1f(uh) + ǫ2f
′(uh)ph) vxdx+ (ǫ1f̂j+ 1

2
+ ǫ2f̂ ′pj+ 1

2
)v−

j+ 1
2

− (ǫ1f̂j− 1
2
+ ǫ2f̂ ′pj− 1

2
)v+

j− 1
2

, (4.85)
ˆ

Ij

phwdx =−
ˆ

Ij

f(uh)wxdx+ f̃j+ 1
2
w−

j+ 1
2

− f̃j− 1
2
w+

j− 1
2

,

for j = 1, · · · , N . Here f̂j+ 1
2
, f̂ ′pj+ 1

2
, and f̃j+ 1

2
are the numerical fluxes, which are
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carefully chosen for the stability consideration as follows:

f̂j+ 1
2
: monotone numerical flux, e.g., the Godunov flux in Section 2.1,

f̂ ′pj+ 1
2
=

Jf(uh)Kj+ 1
2

JuhKj+ 1
2

(ph)
+
j+ 1

2

, (4.86)

f̃j+ 1
2
= f((uh)

−
j+ 1

2

).

The resulting semi-discrete scheme features a similar stability property as the linear

case. In particular, we have the following proposition.

Proposition 4.40. The semi-discrete LDG scheme (4.85) with the numerical fluxes

(4.86) is L2 stable.

Proof. Over cell Ij , let v = uh and w = ph in scheme (4.85), we can derive the

following cell entropy inequality,

d

dt

ˆ

Ij

u2
hdx+

ˆ

Ij

p2hdx = Ĥj+ 1
2
− Ĥj− 1

2
+Θj− 1

2
, (4.87)

where Ĥj+ 1
2
is the numerical entropy flux defined by

Ĥj+ 1
2
= ǫ1

(
F ((uh)

−
j+ 1

2

)− (uh)
−
j+ 1

2

f̂j+ 1
2

)
+ ǫ2

Jf(uh)Kj+ 1
2

JuhKj+ 1
2

(ph)
+
j+ 1

2

(uh)
−
j+ 1

2

with F (u) =
´ u

f(s)ds, and

Θj− 1
2
= ǫ1

(
JF (uh)Kj− 1

2
− f̂j− 1

2
JuhKj− 1

2

)
≤ 0
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because of the monotonicity of the numerical flux f̂ and ǫ1 < 0. The L2 stability

follows by summing up (4.87) over j.

Similar to the linear case, one can formulate a LWDG scheme for solving (2.1)

based on the semi-discrete scheme (4.85) with second order accuracy in time: find

pnh, un+1
h ∈ V k

h such that, ∀v, w ∈ V k
h , we have

ˆ

Ij

un+1
h v dx =

ˆ

Ij

un
hvx dx+∆t

(
ˆ

Ij

(
f(un

h)−
∆t

2
f ′(un

h)p
n
h

)
vx dx

−
(
f̂j+ 1

2
− ∆t

2
f̂ ′pnhj+ 1

2

)
v−
j+ 1

2

+

(
f̂j− 1

2
− ∆t

2
f̂ ′pnhj− 1

2

)
v+
j− 1

2

)
,

(4.88)
ˆ

Ij

pnhw dx =−
ˆ

Ij

f(un
h)wx dx+ f̃j+ 1

2
w−

j+ 1
2

− f̃j− 1
2
w+

j− 1
2

,

for j = 1, . . . , N and n = 0, 1, . . .. The numerical fluxes f̂j+ 1
2
, f̂ ′pj+ 1

2
, and f̃j+ 1

2
are

chosen as (4.86). Again, note that the new LWDG scheme (4.88) is defined by the

semi-discrete LDG scheme (4.81) coupled with the forward Euler time discretization

with ǫ1 = −∆t and ǫ2 = −∆t2

2
.

The higher temporal order accuracy can be attained by incorporating more time

derivatives in the Taylor expansion. For example, the third order temporal deriva-

tive can be added to achieve third order accuracy. However, we find it difficult to

formulate a semi-discrete LDG scheme, for which the L2 stability can be proved,
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when solving the following PDE:

ut = ǫ1f(u)x + ǫ2 (f
′(u)f(u)x)x + ǫ3

(
f ′′(u) (f(u)x)

2 + f ′(u) (f ′(u)f(u)x)x
)
x
.

(4.89)

Here, ǫ1 < 0, ǫ2 > 0, and ǫ3 < 0 are constant. On the other hand, we can mimic the

procedure of the linear case by introducing another auxiliary variable

q = (f ′(u)p)x ,

and obtain

f ′′(u) (f(u)x)
2 + f ′(u) (f ′(u)f(u)x)x = f ′′(u)p2 + f ′(u)q.

Similarly, to the scheme (4.88), we can develop a LWDG scheme with third order

accuracy in time, and the simple alternating fluxes are chosen for the third order

terms in the simulations [115, 114]. From our extensive numerical tests, the proposed

third order scheme appears to be stable.

Remark 4.41. The proposed scheme can be directly extended to high dimensional

problems as the original LWDG scheme. However, much more auxiliary variables

are needed. From this point of view, the proposed scheme is much more involved

of implementation than the original LWDG scheme when solving high dimensional

problems.

Hyperbolic Conservation Law System: Euler System
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The proposed scheme can be extended for solving hyperbolic conservation law

systems. To illustrate the idea, we consider the 1-D Euler system




ρ

M

E




t

+




M

vM + P

v(E + P )




x

= 0, (4.90)

where ρ is density, v is velocity, M = ρv is momentum, E is total energy and P is

pressure given by the equation of state P = (γ − 1)(E − 1
2
vM) with γ = 1.4. Below,

we consider a second order accurate LW procedure by repeatedly using the Euler

equation (4.90) and its differentiation versions, we have

ρ(t +∆t) ≈ρ(t) + ∆tρt +
∆t2

2
ρtt

=ρ(t)−∆tMx +
∆t2

2
(vM + P )xx,

M(t +∆t) ≈M(t) + ∆tMt +
∆t2

2
Mtt

=M(t) −∆t(vM + P )x +
∆t2

2

(
(γ − 1) (v(E + P ))x

+ (3− γ)v(vM + P )x +
γ − 3

2
v2Mx

)

x

, (4.91)

E(t+∆t) ≈E(t) + ∆tEt +
∆t2

2
Ett

=E(t)−∆t(v(E + P ))x +
∆t2

2

((
3

2
(γ − 1) + γ

E

P

)
(vM + P )x

+

(
(γ − 1)v3 − γEv

ρ

)
Mx + γv(v(E + P ))x

)

x

.
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Similar to the scaler case, define the following three auxiliary variables

p = Mx, q = (vM + P )x, r = (v(E + P ))x. (4.92)

Plug (4.92) into (4.91), we obtain

ρ(t+∆t) ≈ρ(t)−∆tMx +
∆t2

2
qx

M(t +∆t) ≈M(t)−∆t(vM + P )x +
∆t2

2

(
γ − 3

2
v2p+ (3− γ)vq + (γ − 1)r

)

x

(4.93)

E(t+∆t) ≈E(t)−∆t(v(E + P ))x +
∆t2

2

((
(γ − 1)v3 − γvE

ρ

)
p

+

(
3

2
(γ − 1) + γ

E

P

)
q + γvr

)

x

.

Then, a second order LWDG method can be formulated based on (4.92) and (4.93).

Again, higher order accuracy can be obtained by incorporating more derivatives in

the truncated Taylor expansion (4.91) and introducing the corresponding auxiliary

variables. In the simulation, we adopt the Godunov flux for the first order spa-

tial derivative and the alternating fluxes for the high order derivatives in the LDG

framework. The details of the formulation are omitted for brevity.

4.3.4 Fourier Analysis for the New LWDG Schemes

In this subsection, we apply the classical Fourier analysis to the newly proposed

LWDG scheme to study its superconvergence properties. In particular, we follow the
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approach in Section 4.1 to analyze the eigen-structure of the amplification matrix

for the LWDG schemes via symbolic computations.

We first note that, similar to a RKDG scheme (see equation (4.2) and (4.27)),

the original and the new LWDG schemes for solving the model equation (4.1) can

both be written in a matrix form

u
n+1
j =

m1∑

m=−m0

Amu
n
j+m, (4.94)

where (j−m0, · · · , j+m1) is the stencil. For example, denote by cfl = ∆t
∆x

, we have

u
n+1
j =




cfl + 2cfl2 cfl
2
+ cfl2

−6cfl − 6cfl2 −3cfl − 3cfl2


u

n
j−1

+




1− cfl − 4cfl2 − cfl
2
− cfl2

2

6cfl − 6cfl2 1− 3cfl − 12cfl2


u

n
j

+




2cfl2 − cfl2

2

12cfl2 −3cfl2


u

n
j+1,

for the proposed LWDG scheme of P 1 DG spatial discretization combined with a

second order LW procedure.

Substituting the ansate (4.3) into the matrix form of the scheme (4.94), we obtain
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the following iterative equation for the coefficient vector ûn,

û
n+1 = Gû

n, (4.95)

where G is the amplification matrix, given by

G =

m1∑

m=−m0

Amexp(imξ), ξ = ω∆x. (4.96)

It is observed from the symbolic computations that G is diagonalizable. Denote

the k+1 eigenvalues as λ0, · · · , λk. The linear stability requires |λl| ≤ 1, l = 0, · · · , k.

Similar to a RKDG scheme, there is only one physically relevant eigenvalue, denoted

by λ0, which approximates the analytical eigenvalue exp(−iω∆t) for the original or

new LWDG scheme, see Proposition 4.1 and Proposition 4.25. Under certain CFL

time step restriction, the other k non-physical eigenvalues will be damped exponen-

tially fast as one evolves the numerical solution in time.

Below, we analyze the dispersion and dissipation errors for the physically relevant

eigenvalue λ0 via symbolic computations. Note that such analysis of RKDG schemes

and original LWDG schemes are given in Section 4.2.4 and [116], respectively. The

comparison between the two LWDG schemes will be drown based on the dispersion

and dissipation errors analysis, which can partially explain why the new LWDG

scheme exhibits superconvergence but the original one does not.

We perform symbolic computations on Mathematica. Below is a summary for

the two LWDG schemes when k = 1, 2. Assume 0 < cfl ≤ 1 and ω∆x ≪ 1 in the
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asymptotic expansions.

• New LWDG scheme

– P 1 case

λ0 = 1− iω∆t− ω2

2
∆t2 − iω4

72
∆t∆x3 +O(∆t∆x4)

– P 2 case

λ0 = 1− iω∆t− ω2

2
∆t2 +

iω3

6
∆t3 − iω6

7200
∆t∆x5 +O(∆t∆x6)

• Original LWDG scheme [116]

– P 1 case

λ0 = 1− iω∆t− ω2

2
∆t2 − iω3

12
∆t2∆x+O(∆t∆x3)

– P 2 case

λ0 =1− iω∆t− ω2

2
∆t2 +

iω3

6
∆t3

− ω4

120

(
(20cfl + 5)∆t4 − 2∆t3∆x−∆t2∆x2

1 + cfl

)
+O(∆t∆x4)
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The normalized dispersion and dissipation error of the physically relevant eigen-

value λ0 is defined as

e0 =
1

∆t
(λ0 − exp(−iω∆t)). (4.97)

In Section 4.1, the error e0 is analyzed for the RKDG schemes. It is found that

e0 is (2k + 1)th order accurate in space and pth order accurate in time when the

approximation space V k
h and the pth order SSP RK method are used. And such

super high order accuracy of e0 in space contributes to superconvergence properties

for the RKDG scheme. We would like to analyze the error e0 for the two LWDG

schemes. Here, we only consider P 1 and P 2 cases, and adopt a LW time discretization

procedure such that the resulting LWDG scheme has the same order accuracy in space

and time. Denote eN0 and eO0 as the normalized dispersion and dissipation errors

(4.97) for the new LWDG scheme and the original LWDG scheme, respectively.

By a simple Taylor expansion,

• P 1 case

eN0 = −ω4

72
∆x3 − iω3

6
∆t2 +O(∆x4 +∆t3), (4.98)

eO0 = −iω3

12
∆t∆x − iω3

6
∆t2 +O(∆x3 +∆t3). (4.99)
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• P 2 case

eN0 = − iω6

7200
∆x5 − ω4

24
∆t3 +O(∆x6 +∆t4), (4.100)

eO0 = − ω4

cfl + 1

(
(5cfl + 2)

24
∆t3 − 1

60
∆t2∆x− 1

120
∆t∆x2

)
+O(∆x3 +∆t4).

(4.101)

Discussion: First we note that the order of the leading term of error eN0 in the

asymptotic expansion is the same as that from the RKDG scheme, which is (2k+1)th

order in space and (k+1)th order in time for both P 1 and P 2 cases. With the similar

argument in Section 4.1, it is implied that the the numerical error by the new LWDG

scheme does not significantly grow if the spatial error dominates. In fact, we only

need to choose sufficiently small CFL number to reduce the temporal error. In the

simulation, we let CFL=0.01 and the superconvergent (2k+1)th order accuracy can

be numerically observed when the mesh is relatively coarse. On the other hand,

under the assumption cfl < 1, error eO0 by the original LWDG scheme is dominated

by

eO0 = O(∆t∆xk),

rather than a super high order term O(∆x2k+1) as in the new LWDG scheme.

Numerical Results

Below, we provide a collection of 1-D and 2-D numerical experiments to inves-

tigate the superconvergence properties of the newly proposed LWDG schemes in

different settings.
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Example 4.42. Consider the linear advection problem:

ut + ux = 0, x ∈ [0, 2π], (4.102)

with the initial condition

u(0, x) = sin(x), (4.103)

and periodic boundary conditions. In the simulation, we choose ∆t=CFL∆x with

CFL= 0.01 . In Table 4.19, we report the L2 and L∞ errors and the orders of

accuracy before and after the post-processing procedure for the proposed LWDG

scheme. Unlike the original LWDG scheme, it is clearly observed that the magnitude

of numerical errors by the new LWDG schemes is greatly reduced through the post-

processing procedure and the orders of accuracy are also enhanced from k + 1 to

2k + 1. The observation indicates that numerical error of the new LWDG scheme is

order of 2k + 1 in space in terms of negative-order norms. A rigorous proof of the

claim is subject to future investigation.

Then we test the long time behavior of the L2 errors by the proposed LWDG

scheme in comparison to that by the original LWDG scheme. In Figure 4.17, we

report the time evolution of numerical errors by the two types of LWDG P 2 schemes

with N = 50 up to time T= 500. It is observed that the error by the new LWDG

scheme does not significantly grow over a long period of time, which is very similar

to the result by the RKDG P 2 scheme shown in Figure 4.16. Also note that the error

by the original LWDG scheme grows linearly with respect to time.
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In Section 4.1, the following error is defined and studied for RKDG schemes:

ē = uh(t = 2π)− uh(t = 4π). (4.104)

For a RKDG scheme, the error ē is in the order of 2k + 1 in space, which indicates

that the numerical error will not significantly grow for a long time period. Here, we

also check the error ē for the proposed LWDG scheme. In Table 4.20, we report the

L2 norms of error ē and orders of accuracy. Similar to the RKDG scheme, (2k+1)th

order of accuracy is observed, which implies that the numerical error by the new

LWDG scheme does not significantly grow for a long time period. The observation is

consistent with the results given in Figure 4.17. Also note that the original LWDG

scheme does not enjoy such a superconvergence property.

In Figure 4.18, we plot the errors of the numerical solutions before and after

post-processing, and errors ē in absolute value and in logarithmic scale for the new

LWDG P 2 scheme and the original LWDG P 2 scheme. It is observed that, for both

schemes, the post-processed errors and errors ē are much less oscillatory and also

much smaller in magnitude than the pre-processed errors. Moreover, note that the

magnitude of post-processed errors and errors ē by the new LWDG scheme is smaller

than that by the original LWDG scheme, as the former ones are fifth order accurate

in space, but the latter ones are only third order.

Example 4.43. Consider 1-D nonlinear Burgers’ equation:

ut +

(
u2

2

)

x

= 0, x ∈ [0, 2π], (4.105)
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Table 4.19: One-dimensional linear advection. New LWDG scheme. T=1.
CFL=0.01.

Before post-processing After post-processing

mesh L
2 error order L

∞ error order L
2 error order L

∞ error order

20 4.22E-03 – 1.37E-02 – 3.73E-04 – 5.41E-04 –

40 1.06E-03 1.99 3.51E-03 1.96 4.25E-05 3.14 6.09E-05 3.15

P
1 60 4.72E-04 2.00 1.57E-03 1.98 1.22E-05 3.09 1.74E-05 3.09

80 2.65E-04 2.00 8.85E-04 1.99 5.04E-06 3.06 7.18E-06 3.07

100 1.70E-04 2.00 5.68E-04 1.99 2.55E-06 3.05 3.63E-06 3.06

20 1.07E-04 – 3.66E-04 – 2.52E-06 – 3.59E-06 –

40 1.34E-05 3.00 4.62E-05 2.99 4.47E-08 5.82 6.36E-08 5.82

P
2 60 3.96E-06 3.00 1.37E-05 3.00 4.37E-09 5.74 6.21E-09 5.74

80 1.67E-06 3.00 5.78E-06 3.00 8.60E-10 5.65 1.22E-09 5.65

100 8.56E-07 3.00 2.96E-06 3.00 2.48E-10 5.57 3.53E-10 5.57

20 2.07E-06 – 5.44E-06 – 6.89E-08 – 9.75E-08 –

40 1.30E-07 3.95 3.85E-07 3.82 2.76E-10 7.97 3.90E-10 7.96

P
3 60 2.55E-08 4.03 7.55E-08 4.02 1.08E-11 7.98 1.53E-11 7.98

80 8.07E-09 4.00 2.37E-08 4.02 1.09E-12 7.98 1.54E-12 7.98

100 3.31E-09 4.00 9.74E-09 3.99 1.85E-13 7.96 2.61E-13 7.96

with the initial condition

u(0, x) = sin(x) + 2, (4.106)

and periodic boundary conditions. The time step is simply chosen as ∆t =CFL∆x

with CFL= 0.01. In Table 4.21, we report the L2 errors and the orders of accuracy

before and after the post-processing procedure for both the proposed LWDG scheme

and the original LWDG scheme. The superconvergent results are clearly observed

for the new scheme. However, similar to the linear case, the post-processed error

is only order of k + 1 by the original LWDG scheme. We remark that using a

upwind flux, e.g., the Godunov flux, for the first order derivative term is crucial

to obtain superconvergent results in the proposed LWDG formulation. If a general

monotone numerical flux such as the Lax-Friedrichs flux is used, the (2k + 1)th
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Figure 4.17: Long time behavior of errors. 1-D linear advection. Original LWDG P 2

versus new LWDG P 2 scheme. CFL=0.01.

order superconvergence result may not be observed. In Figure 4.19, we plot errors

of the numerical solution before and after post-processing in absolute value and in

logarithmic scale for both LWDG P 2 schemes. The highly oscillatory nature of the

pre-processed errors is observed for both schemes. The post-processed errors do not

oscillate much and the magnitude is also much smaller. Again the magnitude of the

post-processed errors by the new LWDG scheme is much smaller than that by the

original LWDG scheme.

In order to study error ē for the Burgers’ equation, we add a source term to

equation (4.105) such that sin(x + t) + 2 is the exact solution. A similar strategy

is used in Example 4.32. We consider the following Burgers’ equation with a source

term:

ut +

(
u2

2

)

x

= (sin(x+ t) + 3) cos(x+ t), x ∈ [0, 2π], (4.107)
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Table 4.20: One-dimensional linear advection. New LWDG scheme. The L2 norms
of error ē and the orders of accuracy. CFL=0.01.

P 1 P 2 P 3

mesh L2 error order L2 error order L2 error order
20 1.89E-03 – 1.88E-06 – 1.40E-09 –
40 2.39E-04 2.99 5.96E-08 4.98 7.42E-12 7.56
60 7.08E-05 3.00 7.98E-09 4.96 4.36E-13 6.99
80 2.99E-05 3.00 1.93E-09 4.93 5.96E-14 6.92
100 1.53E-05 3.00 6.50E-10 4.88 1.34E-14 6.68

with the initial condition

u(0, x) = sin(x) + 2,

and periodic boundary condition. We report the L2 norms of error ē and the orders

of accuracy in Table 4.22 for the proposed LWDG scheme and the original LWDG

scheme. (2k + 1)th order of accuracy is clearly observed for the new LWDG scheme.

Again, such superconvergence result is not observed for the original LWDG scheme.

In Figure 4.20, we plot numerical errors and errors ē in absolute value and in logarith-

mic scale for both LWDG P 2 schemes. Note that, the error ē is much less oscillatory

and smaller in magnitude than the pre-processed error for the two schemes, however,

the magnitude of the error ē by the new LWDG scheme is much smaller than that

by the original LWDG scheme.

Example 4.44. Consider 1-D Euler system (4.90). Let the initial condition to be

ρ(0, x) = 1 + 0.2 sin(πx), v(0, x) = 1 and P (0, x) = 1,

subject to the 2-periodic boundary conditions. The exact solution is ρ(t, x) = 1 +
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Table 4.21: Burgers’ equation (4.105). T=0.2. CFL= 0.01.

Before post-processing After post-processing

New LWDG Original LWDG New LWDG Original LWDG

mesh L
2 error order L

2 error order L
2 error order L

2 error order

20 4.46E-03 – 4.44E-03 – 3.44E-04 – 3.25E-04 –

40 1.13E-03 1.98 1.13E-03 1.97 3.48E-05 3.30 3.58E-05 3.18

P
1 60 5.05E-04 1.99 5.05E-04 1.99 9.39E-06 3.23 1.16E-05 2.77

80 2.85E-04 1.99 2.85E-04 1.99 3.74E-06 3.20 5.74E-06 2.45

100 1.83E-04 1.99 1.83E-04 1.99 1.84E-06 3.18 3.47E-06 2.26

20 1.37E-04 – 1.28E-04 – 3.35E-05 – 3.41E-05 –

40 1.75E-05 2.97 1.62E-05 2.98 6.42E-07 5.70 8.02E-07 5.41

P
2 60 5.23E-06 2.98 4.81E-06 2.99 5.90E-08 5.89 1.31E-07 4.47

80 2.22E-06 2.99 2.04E-06 2.98 1.06E-08 5.96 4.69E-08 3.58

100 1.14E-06 2.99 1.05E-06 2.99 2.77E-09 6.03 2.28E-08 3.24

0.2 sin(π(x− t)), v(t, x) = 1 and P (t, x) = 1. We compute the numerical solution up

to T=2. In Table 4.23, we report the L2 and L∞ errors and the orders of accuracy

for density ρ before and after applying the post-processing procedure for the new

LWDG scheme. Similar superconvergence property is observed as the scaler cases.

In the simulation, the Godunov flux is used for the first order derivatives in order to

obtain the superconvergence result.

Then we check the error ē which is defined as

ē = ρh(t = 2)− ρh(t = 4),

since the period of the solution in time is 2. The L2 norms of error ē and orders

of accuracy are reported in Table 4.24 for P 1 and P 2. (2k + 1)th order accuracy is

observed.
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Table 4.22: Burgers’ equation (4.107). The L2 norms of error ē and the orders of
accuracy. CFL= 0.01.

New LWDG Original LWDG
P 1 P 2 P 1 P 2

mesh L2 error order L2 error order L2 error order L2 error order
20 5.25E-04 – 8.44E-07 – 6.06E-04 – 4.91E-05 –
40 7.21E-05 2.86 2.67E-08 4.98 9.47E-05 2.68 6.18E-06 2.99
60 2.16E-05 2.97 3.54E-09 4.99 3.34E-05 2.57 1.83E-06 3.00
80 9.14E-06 2.99 8.42E-10 4.99 1.66E-05 2.42 7.74E-07 3.00
100 4.69E-06 3.00 2.77E-10 4.98 9.91E-06 2.31 3.96E-07 3.00

We also use the following benchmark Lax problem, for which discontinuous so-

lution structures will be developed, to test the performance of the proposed LWDG

scheme. Consider the Riemann initial condition:

(ρ, v, P ) = (0.455, 0.689, 3.528) x ≤ 0; (ρ, v, P ) = (0.5, 0, 0.571) x > 0. (4.108)

A robust WENO limiting procedure with the TVB limiter as a troubled cell indicator

is used to suppress the spurious oscillations [83]. In Figure 4.21 and Figure 4.22, we

plot the numerical solutions of density ρ at T=1.3 with different TVB constant M.

Comparable numerical results by the proposed LWDG scheme are observed to those

by the original LWDG scheme [88].

Example 4.45. Consider the following 2-D linear advection equation

ut + ux + uy = 0, x× y ∈ [0, 2π]2, (4.109)
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Table 4.23: 1-D Euler system. New LWDG scheme. L2 and L∞ errors of density ρ.
T=2. CFL= 0.01.

Before post-processing After post-processing

mesh L
2 error order L

∞ error order L
2 error order L

∞ error order

20 8.61E-04 – 2.53E-03 – 2.04E-04 – 2.92E-04 –

40 2.13E-04 2.01 6.77E-04 1.90 2.48E-05 3.04 3.52E-05 3.05

P
1 60 9.45E-05 2.00 3.07E-04 1.95 7.26E-06 3.03 1.03E-05 3.03

80 5.31E-05 2.00 1.74E-04 1.97 3.05E-06 3.02 4.32E-06 3.02

100 3.40E-05 2.00 1.12E-04 1.98 1.55E-06 3.02 2.20E-06 3.02

20 2.14E-05 – 7.35E-05 – 6.33E-07 – 8.98E-07 –

40 2.67E-06 3.00 9.24E-06 2.99 1.30E-08 5.60 1.85E-08 5.60

P
2 60 7.92E-07 3.00 2.74E-06 3.00 1.42E-09 5.47 2.01E-09 5.47

80 3.34E-07 3.00 1.16E-06 3.00 3.04E-10 5.36 4.31E-10 5.36

100 1.71E-07 3.00 5.92E-07 3.00 9.40E-11 5.26 1.33E-10 5.26

Table 4.24: 1-D Euler system. New LWDG scheme. The L2 norms of error ē and
the orders of accuracy of density ρ. CFL= 0.01.

P 1 P 2

mesh L2 error order L2 error order
20 3.79E-04 – 3.77E-07 –
40 4.77E-05 2.99 1.19E-08 4.98
60 1.42E-05 3.00 1.60E-09 4.96
80 5.98E-06 3.00 3.87E-10 4.93
100 3.06E-06 3.00 1.30E-10 4.88

with the initial condition

u(0, x, y) = sin(x+ y), (4.110)

and periodic boundary conditions in both x− and y−directions. We set CFL=0.01

to make the spatial error dominant in the simulation. In Table 4.25, we report the L2

and L∞ errors and the orders of accuracy before and after applying the post-processor

for the proposed LWDG scheme. Similar to the results for the 1-D advection problem,

(k + 1)th order of accuracy is observed for the pre-processed errors in both L2 and
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L∞ norms. Moreover, post-processed numerical solutions are superconvergent with

the order of 2k+1, which implies that numerical error is also order of 2k+1 in space

in negative-order norms for the 2-D case.

Then, we would like to test the long time behavior of the numerical errors. We

set the mesh size as Nx × Ny = 50 × 50 and report the numerical errors for the

two LWDG P 2 scheme at time T = 1, 20, 50, 100, and 200 in Table 4.26. We

observe that the numerical error by the new LWDG scheme does not significantly

grow for a long time period, which indicates, as the RKDG scheme shown in [15],

the new LWDG scheme features similar superconvergence property for the 2-D linear

advection problem. However, as the 1-D case, the error by the original LWDG scheme

is observed to noticeably grow at the beginning of the simulation.

Finally, we study the error ē which is defined as

ē = uh(t = π)− uh(t = 2π).

As the results reported in Example 4.35, error ē by the RKDG scheme is order of

2k+1 in space for solving the 2-D linear advection problem. In Table 4.27, we report

the L2 norms of error ē and orders of accuracy. The (2k + 1)th order of accuracy is

observed. Such superconvergent behavior of error ē implies that the numerical error

by the proposed LWDG scheme solving the 2-D linear advection problem does not

significantly grow for a long time simulation. At last, we want to point out that,

similar to the 1-D cases, the original LWDG scheme for the 2-D advection problem

does not exhibit any superconvergence discussed above. We omit the numerical
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Table 4.25: Two-dimensional linear advection. New LWDG scheme. T=1.
CFL=0.01.

Before post-processing After post-processing

mesh L
2 error order L

∞ error order L
2 error order L

∞ error order

20× 20 5.40E-02 – 4.28E-02 – 1.61E-02 – 3.65E-03 –

40× 40 1.32E-02 2.03 1.13E-02 1.92 1.97E-03 3.03 4.46E-04 3.03

P
1 60× 60 5.86E-03 2.01 5.11E-03 1.96 5.80E-04 3.02 1.31E-04 3.02

80× 80 3.29E-03 2.01 2.89E-03 1.98 2.43E-04 3.02 5.49E-05 3.02

100× 100 2.10E-03 2.00 1.86E-03 1.98 1.24E-04 3.01 2.80E-05 3.02

20× 20 2.99E-03 – 3.40E-03 – 8.14E-05 – 1.83E-05 –

40× 40 3.74E-04 3.00 4.25E-04 3.00 2.13E-06 5.25 4.80E-07 5.26

P
2 60× 60 1.11E-04 3.00 1.26E-04 2.99 2.62E-07 5.17 5.90E-08 5.17

80× 80 4.68E-05 3.00 5.33E-05 3.00 6.00E-08 5.13 1.35E-08 5.12

100× 100 2.39E-05 3.00 2.73E-05 3.00 1.92E-08 5.10 4.33E-09 5.10

results from the original LWDG schemes for brevity.

Table 4.26: Long time behavior of errors. 2-D linear advection. LWDG P 2 schemes.
The L2 errors at T = 1, 20, 50, 100, and 200. Nx ×Ny = 50× 50. CFL=0.01.

Scheme T= 1 T= 20 T= 50 T= 100 T= 200
New LWDG P 2 1.92E-04 1.92E-04 1.94E-04 1.99E-04 2.21E-04

Original LWDG P 2 1.91E-04 1.95E-04 2.16E-04 2.77E-04 4.46E-04
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Table 4.27: Two-dimensional linear advection. New LWDG scheme. The L2 norms
of ē and the orders of accuracy. CFL=0.01.

P 1 P 2

mesh L2 error order L2 error order
20× 20 4.61E-02 – 1.67E-04 –
40× 40 5.96E-03 2.95 5.30E-06 4.98
60× 60 1.77E-03 2.99 5.30E-06 4.99
80× 80 7.50E-04 2.99 1.66E-07 4.99
100× 100 3.84E-04 3.00 5.47E-08 4.99
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Figure 4.18: Linear advection. The new LWDG P 2 scheme (left column). The
original LWDG P 2 scheme (right column). Before post-processing (top). After post-
processing (middle). Error ē (bottom). CFL= 0.01. T=4π.

228



4.3. A NEW LWDG SCHEME WITH SUPERCONVERGENCE

x

lo
g(

e)

1 2 3 4 5 6
-10

-9

-8

-7

-6

-5

-4

-3

-2

N=10
N=20
N=40
N=80

P2

x

lo
g(

e)

1 2 3 4 5 6
-10

-9

-8

-7

-6

-5

-4

-3

-2

N=10
N=20
N=40
N=80

P2

x

lo
g(

e)

1 2 3 4 5 6

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

N=10
N=20
N=40
N=80

P2

x

lo
g(

e)

1 2 3 4 5 6

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

N=10
N=20
N=40
N=80

P2

Figure 4.19: Burgers’ equation (4.105). New LWDG scheme (left column). Original
LWDG scheme (right column). P 2 is used. Before post-processing (top). After
post-processing (bottom). CFL=0.01, T=0.2.
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Figure 4.20: Burgers’ equation (4.107). New LWDG P 2 scheme (left column). O-
riginal LWDG P 2 scheme (right column). Before post-processing (top). Error ē
(bottom). CFL= 0.01. T=4π.
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Figure 4.21: One-dimensional Euler system. Lax problem. Density ρ. New LWDG
scheme. TVB constant M= 1. P 1 (left). P 2 (right). N=200. T=1.3.
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Figure 4.22: One-dimensional Euler system. Lax problem. Density ρ. New LWDG
scheme. TVB constant M= 50. P 1 (left). P 2 (right). N=200. T=1.3.
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CHAPTER 5

Conclusions

In this dissertation, we have systematically studied high order numerical schemes for

transport problems with focuses on semi-Lagrangian (SL)-type schemes and super-

convergence for discontinuous Galerkin (DG) methods.

First, a family of high order SL methods for linear transport equations were re-

viewed, formulated, and compared including SLDG methods and SL finite difference

weighted essentially non-oscillatory (WENO) schemes. In the SL framework, there

is no time step restriction for linear stability, and hence the allowance of taking a

extremely large time step leads to great saving of computational cost. Based on

these efficient high order numerical solvers, a hybrid SL numerical method has been
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designed to solve the Vlasov-Possion (VP) system. The proposed hybrid method

combines the SL/Eulerian Runge-Kutta (RK) DG scheme and the SLWENO scheme

for the spacial advection and velocity ac/deceleration, respectively. The DG scheme

is adopted for spacial advection due to its compactness. RKDG offers the flexibility to

deal with complicated geometries and boundary conditions when multi-dimensional

problems are considered. SLWENO is adopted for velocity advection due to its ro-

bustness in resolving filamentation solution structures of the VP system. We apply

the hybrid methods to several test examples, such as linear advection, solid body ro-

tation, and the VP system to demonstrate the performance. Furthermore, in order

to correct the low order splitting error, a method couples the SLWENO scheme with

the integral deferred correction (IDC) framework was formulated for Vlasov simula-

tions: we adopt the dimensional splitting SLWENO scheme as a base scheme to get a

predicted solution in IDC, and the low order dimensional splitting error is iteratively

reduced by solving the error equations again in a dimensional splitting fashion in the

correction steps in IDC. We extended the scheme to solve the guiding center Vlasov

equation and the two-dimensional incompressible flow in vorticity stream-function

formulation. A collection of numerical experiments demonstrate great performance

of the proposed high order scheme in resolving solutions structures, even in a long ter-

m simulation. However, it is numerically observed that the IDC framework renders

some CFL time step restrictions, despite the SL evolution mechanism in the predic-

tion and correction steps of IDC. We quantify such CFL restrictions via Fourier anal-

ysis for several high order methods that we used in simulations. Then, the proposed

SLDG scheme on Cartesian meshes was extended to the cubed-sphere geometry for
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solving global transport equations. The cubed-sphere geometry is known to be free

from polar singularities, and well-suited for element-based Galerkin methods, such as

DG. A set of benchmark tests were preformed to demonstrate the robustness of the

proposed SLDG scheme on the sphere. The comparison between the SLDG scheme

and another two popular global transport schemes including the RKDG scheme and

a conservative semi-Lagrangian scheme (CSLAM) was performed, which shows the

advantages of SLDG in different settings.

In the second part of this work, we discussed superconvergence properties of DG

and local DG (LDG) methods for linear hyperbolic and parabolic problems via Fouri-

er approach. Especially, superconvergence properties of DG with uniform meshes for

linear problems with periodic boundary conditions are discussed in terms of: (1)

the dissipation and dispersion error of physically relevant eigenvalue; this part of

error is related to the negative-order norm of DG error; (2) the eigenvectors with

Lagrangian basis functions based on shifted Radau points; this part of error is relat-

ed to superconvergece at Radau points; and (3) the long time behavior of the DG

error. We conclude that the error of a numerical solution at Radau points will not

significantly grow over a long period of time that is on the order of ∆x−k+1 and

∆x−k for DG and LDG, respectively. Moreover, supraconvergence properties of DG

and LDG methods are studied based on our understanding of the eigen-structure

of the amplification matrix. Extensive numerical examples for scalar and system of

equations are demonstrated to verify the analysis and to assess the superconvergence

properties of DG and LDG in more general settings. We also discussed the super-

convergence properties of DG methods with Lax-Wendroff (LW) time discretization.
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Numerical results indicate that the original LWDG scheme does not exhibit several

important superconvergence properties including accuracy enhancement by applying

a post-processor and long time behaviors of numerical errors. In order to restore

the superconvergence in the LW framework, we formulated a new LWDG scheme, in

which the techniques borrowed from the local DG (LDG) scheme were adopted to

obtain high order spatial derivatives. Again, Fourier analysis via symbolic compu-

tations was used to theoretically investigate superconvergence property of the newly

proposed scheme.

Future work consists of

• extending the hybrid methods to multi-dimensional VP and Vlasov-Maxwell

(VM) systems;

• mitigating or getting rid of the CFL time step restriction in the IDC framework;

• developing a high order asymptotic-preserving SL scheme for the VP system

in the quasi-neutral limit;

• developing a high order non-split SL scheme for multi-dimensional transport

problems;

• seeking analytical proofs for our symbolic analysis obtained in Chapter 4 and

analyzing superconvergence properties of various DG formulations.
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