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Abstract

Our brains process sensory information to infer the state of the world. How-

ever, the input from our senses is noisy, which may lead to errors in perceptual

judgements. A number of theoretical studies have modeled perception as a pro-

cess of probabilistic inference that involves making decisions based on uncertain

evidence. Bayesian optimality is a general principle of probabilistic inference that

has been successfully used to build quantitative models of perception. In addition,

several experimental studies show that human observers make best possible de-

cisions, and hence exhibit close to Bayes-optimal behavior on various visual per-

ceptual tasks such as visual search, sameness judgement, and change detection.

However, the impact of structured stimuli on decision-making remains largely

unexplored. Moreover, the sensory measurements can themselves be strongly

correlated to produce a structured representation of the stimulus input. These

measurement correlations can interact with the structure of the external input in

many possible ways and should not be considered in isolation.

In this work, we focus on visual search task to examine how visual perception

is affected by structured input. We analyze the responses of subjects on a target de-

tection experiment where the stimulus orientations were generated with varying

strength of correlations across different experimental sessions. We fit several mod-

els to the experimental data using maximum-likelihood parameter estimation. We

use rigorous model selection to find that human observers take into account stim-

ulus correlations in detecting a target. However, they behave suboptimally in

inferring the correct stimulus correlations that were used in the experiment. We
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find that perhaps observers treat the partial stimulus correlations identically and

behave differently when the stimuli are perfectly correlated.

We also describe how the relation between measurement and stimulus corre-

lations affects the performance of an ideal Bayesian observer in a family of target

detection tasks. We find that the effect of measurement correlations depends on its

interaction with stimulus correlations and other statistical structure parameters.

Measurement correlations always improves the performance of the ideal observer

on a detection task with multiple targets; whereas in the case of single target, the

impact is significant only in the presence of strong external structure.
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1.1 Bayesian modeling of a perceptual task - defining the generative
model and deriving the inference process. (A) The generative
model. The first step in Bayesian modeling is to define the gen-
erative model. This figure outlines the graphical representation of
the generative model we will be using throughout the dissertation.
The nodes represent the variables involved in the task and arrows
determine the influence of one node on another. This influence is
mathematically described in terms of conditional probabilities. The
observer infers the (hidden) state of the world, W from the stim-
ulus, s presented in the task by making a measurement, x of the
stimulus. (B) Inference process. The second step in Bayesian mod-
eling is to derive the inference process of an observer. That is, to
understand the mathematical process by which the observer infers
W based on the measurement, x. This step involves inverting the
generative model and marginalizing over intermediate variable, s
to compute a decision criterion and making an estimate, Ŵ about
the state of the world. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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1.2 The process of marginalization in Bayesian modeling. The gen-
erative model usually contains auxiliary variables that are not of
primary interest, but they may have necessary information about
the state of the world, W. Here the stimulus, s is an intermediate
variable, but it links the world state variable of interest with the
measurement, x. Marginalization is a process to deal with such an-
cillary variables to obtain the desired expression for the likelihood
or posterior probability of the world state variable of interest. It
involves averaging or integrating over the possible values of the
ancillary variable and is very common in Bayesian modeling. . . . 19

1.3 Steps involved in Bayesian modeling of a perceptual task. The
figure presents the schematic of a Bayesian inference process to
model a perceptual task. We will follow this plan for all the tasks
discussed in the dissertation. The first step of specifying the gen-
erative model involves describing the probability distributions to
understand how sensory data are generated from the state of the
world. The observer makes an estimate of the world state based
on the sensory measurement on each trial of the task. This consti-
tutes the second step of deriving the inference process in a Bayesian
model. The estimate of the observer varies across trials in response
to a fixed stimulus and follows a distribution. In the final step of
Bayesian modeling of the task, this estimate distribution is computed. 20
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1.4 Bayesian modeling of a simple target detection task with two
stimuli. (A) The generative model. The binary variable, T de-
scribes the target presence in a trial. The two stimuli, s1 and s2 are
chosen conditioned on T. When T = 1, one of the stimuli is a target
with a vertical orientation, while the orientation of the other stim-
ulus is chosen randomly from a normal distribution. The observer
makes noisy and independent measurements, x1 and x2 of the two
stimulus. (B) The inference process. The observer combines the
two measurements to compute a decision variable, d(x1, x2) and
infers an estimate, T̂ of the world state variable, T. The decision
variable, d(x1, x2) is a log posterior ratio of the probability of re-
porting ”target present” and ”target absent”, given the observer’s
measurements. If d > 0, the observer reports target is present and
absent otherwise. (C) Example displays in the task. Since there are
only two stimuli and one target, three types of visual displays can
be presented to the observer. In the first two displays, the target is
present to the left and right of the cross in the center. When there
is no target, both stimuli are distractors and have randomly chosen
orientations. The bottom display illustrates such an example. . . . 25

1.5 Performance of an observer in a simple target detection exam-
ple based on different models. Proportion of correct responses as
a function of the standard deviation of distractor orientations, σs
for an observer based on different models. The optimal model has
the maximum performance at all values of σs than other threshold
models. A lower performance is observed at low standard devia-
tions for all models since it becomes difficult to detect a target on
the task among distractors that have relatively similar orientations
to that of the target. As the standard deviation of the distractor ori-
entations increases, the task becomes relatively easier and the per-
formance increases for all models. The model with high threshold
parameter, θ predicts a similar performance of the observer as that
of the optimal model. This indicates that it is difficult to choose a
model that is most consistent to describe the observer’s behavior. . 31
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2.1 Statistical structure of relevant task variables in the optimal-observer
model for a target detection task with stimulus correlations. (A)
Generative model. The nodes represent the variables in the task
and arrows indicate conditional dependencies between them. The
binary variable, T represents target presence for T = 1 and ab-
sent when T = 0. The standard deviation, σs and the pairwise
correlation coefficient, ρs determine the structure of the stimulus,
s = (s1, s2, · · · , sN) in the task. An observer makes a measurement,
xi, of each presented stimulus si. These measurements are assumed
to be noisy and independent between locations. (B) Inference pro-
cess. The optimal observer infers T by ”inverting” the generative
model. The observer computes a decision variable, d(x) based on
the measurements, x and it is given by the log-posterior ratio be-
tween the two possibilities, log (p(T = 1|x)/p(T = 0|x)). The sign
of d(x) gives the optimal estimate of T and it is denoted by T̂. . . . 44

2.2 Target detection experiment procedure. (A) Gabor patch. Subjects
were presented with 4 stimuli on each trial. Each stimulus was a
Gabor patch. The figure illustrates an example of a Gabor patch
from the experiment. (B) Time course of a test trial. The experi-
ment started with a display of fixation cross in the center followed
by the stimulus display for 0.1 sec. Subjects reported through a key
press whether a vertical stimulus was present in the display. After
their response, a display screen was shown with a green (correct) or
red (incorrect) fixation cross to provide feedback. (C) Time course
of a practice trial. Each experimental session started with 50 prac-
tice trials. The procedure of a practice trial was same as a test trial,
except that an additional feedback screen was shown for 2 sec at
the end of the trial. The extra display contained the original stimu-
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(D) Sample displays from different experimental conditions. The
experiment was divided in four different sessions. Each session
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sions was randomized across subjects. This figure shows example
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Chapter 1
Introduction

Our decisions are based on sensory measurements and prior knowledge of the

surroundings. The physical observations made by our eyes, ears, skin, and other

sensory organs are transmitted to the brain. The brain integrates and interprets

this information to draw inferences about the state of the world.

However, our sensory observations are typically incomplete and imperfect.

They may not always reflect the true state of the world. Noisy and imprecise

measurements can be difficult to interpret, and may lead to incorrect inferences.

Thus, the question arises: how does the brain infer the state of the world from the

inadequate, and uncertain sensory observations? Theoretical neuroscientists have

hypothesized that our brain performs specific probabilistic computations to pro-

cess the partially informative observations and makes an inference about the state

of the world [69, 80, 160, 120, 90, 93, 100, 82] . Thus, perception can be thought of as

a form of probabilistic inference [154, 65, 35]. The results of several experimental

1



studies indicate that the brain interprets sensory information probabilistically to

make the best possible guess about the state of the world [43, 68, 10, 83, 84, 53, 54,

94, 151, 98, 75, 125]. These studies suggest that the brain computes the probability

of many interpretations and chooses the one that is most likely. Such a strategy

of framing the best possible perceptual inference is known as optimal probabilistic

inference or Bayesian inference. The Bayesian theory of perception is based on the

assumption that the brain finds the option that has the maximum probability of

being correct, given incomplete and imperfect sensory information.

Earlier studies provide concrete evidence that humans and other animals per-

form probabilistic inference in a number of idealized situations. However, it is not

always clear how these results translate to more realistic situations. In general, we

can expect that Bayesian models describing human behavior can be fairly com-

plex, and may require extensive and elaborate analytic computations. Often our

observation time is short, and we need to make decisions in a short time. Further,

most of our decisions involve processing of information from multiple sources.

Given the constraints of biologically feasible computations, does our brain really

make the best possible use of the information? If not, does it use some approx-

imate strategies - and if so, when do such strategies fail? What are the possible

models that best describe the computations performed by the brain?

To examine these questions, we study human behavior in an experimental set-

ting (Chapter 2). The purpose of this study is to determine whether humans be-

have optimally in a fairly difficult perceptual task. We develop the theory for an
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optimal Bayesian observer (Section 2.2), and provide several alternative subop-

timal models (Chapter 4) that could possibly explain the observer’s responses.

These models encompass a range of assumptions about the observer’s behavior.

We compare these models (Chapter 5) using Bayesian and Akaike model compar-

isons (described in Chapter 3), to find the model that is most consistent with the

experimental data.

Further, we theoretically analyze the performance of an ideal observer on a

family of target detection tasks (Chapters 6 and 7). We present our analysis under

certain assumptions about the parameters that determine the external structure of

the task and those that govern the structure of observer’s measurements.

In this Chapter, we give an overview of the key concepts of Bayesian infer-

ence. We begin by describing the different components of Bayes’ rule, and how

they can be interpreted in a perceptual task. We then describe the fundamentals

of Bayesian modeling and their applications to psychophysical studies. Further,

we provide the detailed explanation of Bayesian modeling using a simple target

detection example. We conclude with a summary of the work presented in subse-

quent chapters of the dissertation.
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1.1. PERCEPTION AS BAYESIAN INFERENCE

1.1 Perception as Bayesian inference

Several experimental studies have provided evidence for Bayesian inference in

perception [53, 43, 68, 84, 10, 83, 54, 94, 151, 99, 75, 150]. These studies also sug-

gest that humans are capable of optimally integrating the available information.

For instance, the experiments performed by Ernst and Banks [43] have provided

evidence that human observers can optimally combine visual and haptic informa-

tion to make a decision about the height of a raised object. More recently, several

studies have established that humans are near optimal in finding a target among

distractors [94, 98, 99]. The Bayesian framework presented in [78] indicates that

humans not only integrate information based on the content present in the stim-

uli, but also based on the relevance of the task. These and many other similar

studies are designed to investigate whether human behavior can be described in

probabilistic terms.

Probabilistic computations can be helpful in routine life activities. For exam-

ple, we try to predict the possibility of rain on a cloudy day based on weather con-

ditions. We use information of ongoing vehicle and pedestrian traffic to make a

decision about crossing a busy road. These activities require us to integrate differ-

ent sensory information and make an informed decision. Generally, there is more

than one possible choice or decision. Evidence suggests that we assign probability

to the different options and base our decisions on them [83, 43, 93, 53]. According

to Bayesian theory, an optimal observer computes probabilities for each possible

event given the available information and makes a decision based on the most
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1.1. PERCEPTION AS BAYESIAN INFERENCE

probable state of the world. The theory relies on the assumption that the observer

achieves this using Bayes’ computation [12, 88].

1.1.1 Bayes’ theorem

In the Bayesian framework, Bayes’ theorem is used to compute the subjective be-

lief about the state of the world based on accumulated evidence. The theorem

depends on the computation of conditional probabilities. Conditional probabilities

reflect the directional dependence between two events. For example, if A corre-

sponds to the event of rain on a particular day, and B to the presence of clouds

in the sky, then P(A|B) indicates the probability that it will rain given a cloudy

sky. We note that in general, P(A|B) 6= P(B|A), and the two probabilities have

different interpretations.

The Bayesian theory relies on the assumption that the brain combines the sen-

sory measurements with our prior belief of the world via Bayes’ formula,

P(world state|data) =
P(data|world state)P(world state)

P(data)

=
P(data|world state)P(world state)

Total states

∑
k

P(data|kthworld state)P(kthworld state)

. (1.1)

According to the Bayesian model of perception, we infer the probability of the

world state given our sensory information, P(world state|data). We do so by us-

ing the probability of making a sensory measurement given a particular state of

the world, P(data|world state). Importantly, we assume that this second proba-

bility is known to the observer and is part of their of perceptions model thereof.
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1.2. ELEMENTS OF BAYES’ THEOREM

The denominator in Eq. (1.1) is a normalization constant and ensures that the

sum of the posterior probabilities of different world states is one. Frequently, we

are interested in the expression in the numerator which establishes a direct pro-

portional relation of the inferred probability to the sensory measurements and

the associated prior belief. Thus, we often consider the following unnormalized

version of Bayes’ equation,

P(world state|data) ∝ P(data|world state)P(world state). (1.2)

We note that given a particular observation, here ”world state” is the variable

and ”data” is a constant. This formula combines our prior belief with available

evidence to infer the state of the world. In the following section, we provide an

intuitive interpretation of each term in the Bayes’ formula. We follow the ideas

and examples presented in [93].

1.2 Elements of Bayes’ theorem

The Bayes’ theorem consists of the following components: the likelihood func-

tion, the prior probability distribution, and the posterior probability distribution

function.

The likelihood Function

Formally, P(data|world state) is written as L(world state|data) and is known as

the likelihood function over possible world states given the sensory data. We note
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1.2. ELEMENTS OF BAYES’ THEOREM

that this is a function of the world state. It is not a probability distribution over

the world states. Instead, it represents the likelihood of each state of the world

given available data and summarizes the degree to which the sensory data favor

one world state interpretation over the other. The accuracy of this selection is

dependent on the quality of the observation.

The shape and nature of the likelihood function depend on the quality of the

sensory input. The function has a clearly defined peak in case of high quality

sensory input. It is usually flat or has multiple peaks when the information is in-

adequate or ambiguous. As an example, consider that we are walking on a street

on a foggy day. Our visual information about incoming vehicle will be less accu-

rate, and informative given unclear visible conditions. However, the sound and

moving vehicle noise can be informative in such a case. Therefore, our likelihood

function here will be concentrated around the world state favored by our auditory

sensory information rather than visual one.

In principle, there are many factors that could affect the likelihood function.

Weather, distance, and other physical conditions can influence the sensory mea-

surements, hence the shape of the likelihood function. Moreover, the quality of

sensory measurement varies across observers. Visual, auditory, and other sensory

capabilities can impact the quality of an observer’s sensory measurement, and

hence the likelihood function.
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1.2. ELEMENTS OF BAYES’ THEOREM

The prior probability distribution

Prior knowledge about the world, P(world state), has significant impact on our

inference process. It represents our beliefs or expectations about the world and

determines the probability of each hypothesized state. Similar to the likelihood

function, prior probability varies over hypothesized world states. Prior knowl-

edge can evolve over time as we gather new information. Prior belief is subjec-

tive, as it depends on the observer’s experiences. Hence, each observer may have

a different prior distribution.

In our previous example, we can use our prior knowledge about the street

and traffic conditions there while walking under unclear visible conditions. If the

street has a curve or possible diversions, we can combine the prior information

about such conditions with our current sensory observation while walking.

The posterior probability distribution

Decisions and inferences are based on the posterior probability of the world state,

denoted by P(world state|data). The posterior probability distribution function rep-

resents the probability of each possible world state given our observational data

and prior beliefs. To compute this probability, we use the likelihood function de-

scribed above. Since the posterior probability is a combination of the likelihood

function and prior information, the nature of the posterior distribution depends

on these two factors. A sharp and peaked likelihood function results in a peaked

and informative posterior probability distribution. On the other hand, in case of
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1.3. BAYESIAN MODELING OF PERCEPTION

flat likelihoods, posterior distribution resembles the prior distribution function

and the observer does not gain any new information from sensory data.

Continuing with our example of walking on a street under foggy conditions,

the likelihood function of a car approaching us could have a broader shape since

our visual information is less informative. In such a case, a prior information

about the traffic conditions on the street could be helpful in making a decision.

1.3 Bayesian modeling of perception

In this section, we discuss in detail the mathematical modeling of perception us-

ing Bayesian framework. Bayesian methods have been used to describe the pro-

cess of perceptual inference and explain decisions of humans and animals on sim-

ple tasks [43, 94, 151, 68, 10, 83, 84]. Bayesian theory assumes that humans use

Bayesian inference to update their belief about the state of the world. They do so

by updating the posterior probability based on new sensory information. Also,

this inference process is continuous and iterative since we incorporate our current

state belief as prior information in making a new decision. There are numerous

examples of routine life activities that can be explained using Bayesian inference.

We discuss some of them below.
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1.3. BAYESIAN MODELING OF PERCEPTION

1.3.1 Visual and auditory perception

Visual and auditory perception are commonly studied examples of Bayesian in-

ference. Recent experimental studies have focused on understanding visual per-

ception through Bayesian modeling [43, 10, 125, 78, 144, 94, 151, 99, 37, 41, 42, 111,

7, 152]. These studies examine human behavior on simple visual tasks. We discuss

some examples described further in [93].

Visual perception is of utmost importance to humans. We process multiple

pieces of information contained in visual scenes to make decisions about the state

of the world. One example is recognizing a friend in a crowd. If an observer is

trying to find a friend in a large crowd from a distance, the visual information

will have some degree of uncertainty. An ideal observer would compute a like-

lihood that each person in the crowd is the friend. As the observer gets closer

to the friend, the quality of the sensory data improves and the likelihood function

gets more peaked around the friend. Further, the observer uses some prior knowl-

edge about the friend - for example, if the friend likes to wear black, then people

wearing black will be assigned larger prior probability.

Our brain also handles tremendous amount of auditory information every day.

We are exposed to numerous types of sounds, noise, and music in our environ-

ment, such as, music play, phone ring, alarm sound, vehicle horn, human speech,

etc. Similar to visual perception, our auditory perception can be described as a

process of Bayesian inference. For instance, when a song is played, we may try to

guess its name. An ideal observer would compute a likelihood function over all
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known songs. The observer would also use prior information about the songs or

the type of music played by a radio station. In that case, the posterior distribution

will be concentrated on frequently played songs.

These examples show how Bayesian computations could explain decisions in

our daily routines. We now discuss how to design experiments to investigate

whether human observers do employ Bayesian computations and how we model

the collected data on the experiment. Here we give a brief description of psy-

chophysical tasks that are extensively used to study perceptual behavior. We also

illustrate the mathematical steps involved in the Bayesian modeling of such per-

ceptual tasks.

1.3.2 Psychophysical studies

Psychophysical studies are used to analyze how animals process information from

the physical world. These tasks are frequently designed to understand how ani-

mals integrate information contained in the stimuli to make a decision. The diffi-

culty of these tasks usually depends on the characteristics of the presented stimuli.

For example, an observer may be asked to discriminate whether a line is to the left

or right of vertical. If the line is really close to vertical, the task can be difficult.

Observers are usually required to perform many iterations (trials) of the task.

The trials can differ from each other if the characteristics of the stimuli are ran-

domly chosen on each trial. The recorded responses of the observer can then be

analyzed using Bayesian models. A wide range of psychophysical experiments
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1.3. BAYESIAN MODELING OF PERCEPTION

have been analyzed using Bayesian inference approach [83, 84, 10, 43, 150, 53, 54,

98, 78, 144, 94, 68, 151, 75, 99] .

Bayesian modeling of perception consists of the following three steps:

1. describing the generative model,

2. specifying the inference process, and

3. computing the observer’s estimate distributions.

These steps are the structural components of any perceptual Bayesian model and

characterize the behavior of a model observer or a subject on the task. Below, we

discuss each step in detail.

1.3.3 Step 1: the generative model

The generative model is a probabilistic model that describes the generation of the

observer’s sensory data. It mathematically describes the complete structure of the

task. It is a forward directed graph with nodes representing the random variables

characterized in the design of the task and the directed edges indicate the depen-

dencies between variables. Each node has an associated probability distribution

and the directed edge determines the influence of one variable on another, which

is expressed in terms of conditional probabilities. At least one node in the model cor-

responds to the variable of interest describing the state of the world and another

variable is the observer’s sensory data. The observer infers the latent variable of

the world state from the stimulus shown in the task.
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We denote the feature or characteristic of a stimulus by s. The feature is some-

times itself referred to as the stimulus. Depending on the problem, the variable

of interest, which we denote by W, could be different from the stimulus, s itself.

It is frequently assumed that the observer makes a noisy measurement, x, of the

presented stimulus. The measurement is also sometimes referred as the internal

representation or the observation of the stimulus. Thus, the generative model con-

tains the variable of interest (if different from the stimulus), the stimulus, and its

measurement. Figure 1.1(A) shows the graphical representation of the generative

model and the probability distributions associated with each node.

1.3.3.1 Distributions in the generative model

The probability distributions in the generative model can be determined from the

experimental design of the task. The world state distribution or prior distribution,

denoted by p(W), represents the distribution of probabilities over the world states

in absence of any sensory information. This distribution could either be discrete

or continuous depending on the associated random variable. The stimulus dis-

tribution is a function of the world state variable, W, and is denoted by p(s|W).

This distribution is completely specified by the design of the experiment. When a

stimulus itself represents the state of the world, we have p(s|W) = p(s).

Measurements or sensory data are usually noisy. This noise could come from

many sources: the random variability due to intrinsic stochastic processes, limi-

tations of our sensing capability, and other unknown sources. We need to make

an assumption about the noise in the generative model. Even in response to the
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p(s |W )

p(x | s)

p(W )(A) 

p(x | s)

p(W | x)
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  Ŵ

Figure 1.1: Bayesian modeling of a perceptual task - defining the generative
model and deriving the inference process. (A) The generative model. The first
step in Bayesian modeling is to define the generative model. This figure outlines
the graphical representation of the generative model we will be using through-
out the dissertation. The nodes represent the variables involved in the task and
arrows determine the influence of one node on another. This influence is mathe-
matically described in terms of conditional probabilities. The observer infers the
(hidden) state of the world, W from the stimulus, s presented in the task by mak-
ing a measurement, x of the stimulus. (B) Inference process. The second step in
Bayesian modeling is to derive the inference process of an observer. That is, to un-
derstand the mathematical process by which the observer infers W based on the
measurement, x. This step involves inverting the generative model and marginal-
izing over intermediate variable, s to compute a decision criterion and making an
estimate, Ŵ about the state of the world.
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same stimulus, the observer’s measurements vary randomly over the course of

experimental trials. The distribution of the measurement, x, given the stimulus, s,

is a conditional distribution which is denoted by p(x|s). It represents the proba-

bility with which a stimulus results in a measurement, x. Frequently, we use the

Gaussian distribution to model measurement noise,

p(x|s) = 1√
2πσ2

e−
(x−s)2

2σ2 . (1.3)

The standard deviation, σ , of the Gaussian function reflects the uncertainty or

noise in the measurement. A higher (lower) value of σ reflects the low (high)

quality of the measurement and is associated with a wider (narrower) measure-

ment distribution. The inverse of the variance, 1
σ2 , is commonly known as the

precision or reliability of the measurement.

1.3.3.2 Used prior distributions in the experiment

The world state distribution reflects an observer’s prior belief about the state of

the world. Subjects can make incorrect assumptions about the prior state of the

world. Given the set up of a psychophysics experiment, it might be difficult for an

observer to correctly determine the world state distribution. Subjects could use a

prior based on the experiences in natural world, but this could potentially be very

different from the experimental world state distribution. For example, subjects

could have a higher prior probability for vertically and horizontally aligned ob-

jects based on their experiences whereas the objects in an experiment could pos-

sess any orientation. Also, a prior of light coming from above would be stronger
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than any other direction for similar reasons. Priors based on common experiences

are more likely to have higher probability. Therefore, sensible assumptions need

to be made about a subject’s prior in the experiment. In most practical cases, a flat

or uniform prior is assumed that assigns equal probability to each outcome for the

state of the world, that is, p(W) = constant. Such a prior simplifies the inference

computations. Alternatively, we can also determine the subject’s prior from ex-

perimental data. This practice is commonly used in the case of binary world state

variables.

In summary, the distributions p(W), p(s|W), and p(x|s) completely define the

generative model of the task and constitute a major component of Bayesian mod-

eling of perceptual inference.

1.3.4 Step 2: the inference or perception process

In the next step of Bayesian modeling, we specify a model to determine how an

ideal observer makes decisions. In our computations, we use certain assumptions

about the observer’s measurements (specified in the generative model). As dis-

cussed earlier, the inference process involves computation of posterior probability

distribution given the likelihood function and the prior distribution. It essentially

involves the ”inversion” of the generative model in order to perform computation

about the world state, W given the sensory data, x. Given the posterior distribu-

tion, denoted by p(W|x), the observer makes a single estimate of the world state.
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Commonly, the observer follows the maximum-a-posteriori estimation (MAP) to ob-

tain the point estimate that has the highest posterior probability. MAP estimation

is one of the most common ways of reading out the posterior distribution as it

finds the most probable option. The prior distribution p(W), the likelihood func-

tion L(W|x) or p(x|W), and the posterior distribution p(W|x) are key components

in the inference process. Figure 1.1(B) describes a general scheme of the inference

model in the Bayesian modeling.

We can also use the likelihood function to make the best guess of the stim-

ulus by maximizing the function over hypothesized world states. This estimate

is called as the maximum-likelihood estimate (MLE) of W and is denoted by ŴML.

Mathematically, we write

ŴML = arg max
W

L(W|x). (1.4)

1.3.4.1 Marginalization

We note that the observer is interested in determining W, and not s. Hence, the

generative model includes a variable that is not of our interest, but it provides

important information for computing the posterior distribution function. Such a

situation is dealt with the marginalization process, where the information about

the intermediate variable is averaged out. It is a commonly used technique in

a Bayesian model, that integrates or sums the values of all such auxiliary vari-

ables to obtain the desired probability distribution over the parameter of interest.

Although auxiliary variables, such as the stimulus, are not of primary interest,
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they play a critical role in the generative model and must be accounted for via

marginalization to obtain an accurate perception.

In the present case, we need to compute the posterior distribution p(W|x), and

not p(s|x). We can obtain it using the Bayes’ formula described in Eq. (1.2)

p(W|x) ∝ p(x|W)p(W), (1.5)

The distribution p(x|W) is not specified in our Bayesian model, instead we have

information about the noise distribution, p(x|s). Thus, we marginalize the in-

formation over the intermediate variable, s to obtain the required distribution

p(x|W) as follows

p(x|W) =

ˆ
p(x|s, W)p(s|W)ds, if s is continuous,

= ∑
i

p(x|s = si)p(s = si|W), if s is discrete.

The above marginalization step, also shown in Figure 1.2 links the world state

variable, W to the measurement, x via the intermediate variable, the stimulus, s.

We further note that the shape of the posterior distribution is preserved under

the normalization constant in Eq. (1.5). After computing the posterior distribution,

the observer then reads the maximum-a-posteriori estimate, denoted by ŴMAP, by

maximizing the posterior distribution

ŴMAP = arg max
W

p(W|x). (1.6)

The MAP estimate, ŴMAP is also the mode of the posterior distribution and re-

flects the observer’s estimate of the world state of interest.
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Variable of 
interest, 

p(W ) p(x | s)
Sensory 

measurement, 

x

p(s |W )

Stimulus, 

sW

p(W | x) via marginalization Inference, 

Figure 1.2: The process of marginalization in Bayesian modeling. The gener-
ative model usually contains auxiliary variables that are not of primary interest,
but they may have necessary information about the state of the world, W. Here
the stimulus, s is an intermediate variable, but it links the world state variable of
interest with the measurement, x. Marginalization is a process to deal with such
ancillary variables to obtain the desired expression for the likelihood or posterior
probability of the world state variable of interest. It involves averaging or inte-
grating over the possible values of the ancillary variable and is very common in
Bayesian modeling.

1.3.5 Step 3: the observer’s estimate distribution

The observer’s measurement, x heavily depends on the sensory noise. Even under

same experimental conditions, the measurements vary across trials due to differ-

ent sensory noise. Therefore, x is a random variable across experimental trials. As

a result, the MAP estimate, ŴMAP is also a random variable in response to a fixed

stimulus and has a probability distribution. In the final step of Bayesian modeling,

we thus determine the distribution of the observer’s estimates. We note that the

mapping from measurement to MAP estimate is completely deterministic and the

randomness in MAP estimate is only because of variability in the measurements

from trial to trial.
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Since we only have access to the MAP estimates of the observer, we need to

compute the probability of each possible estimate in a particular experimental

condition. We can then compare the predictions of the model with the observer’s

behavior. Thus, we compute the distribution of MAP estimates given a fixed stim-

ulus, say s = strue. This is usually denoted by p(ŴMAP|strue) and predicts how

likely the estimate is given the fixed stimulus, strue.

To summarize, Bayesian modeling of a perceptual task consists of specifying

the generative model, deriving the inference process for the observer, and evalu-

ating the distribution of MAP estimates over many trials. This mathematical tool

of quantifying the perceptual behavior is schematically shown in Figure 1.3.

True world 
state, W 

Sensory data, x   Estimated 
world state,  Ŵ

Generative  
model 

Inference 

Figure 1.3: Steps involved in Bayesian modeling of a perceptual task. The fig-
ure presents the schematic of a Bayesian inference process to model a perceptual
task. We will follow this plan for all the tasks discussed in the dissertation. The
first step of specifying the generative model involves describing the probability
distributions to understand how sensory data are generated from the state of the
world. The observer makes an estimate of the world state based on the sensory
measurement on each trial of the task. This constitutes the second step of deriv-
ing the inference process in a Bayesian model. The estimate of the observer varies
across trials in response to a fixed stimulus and follows a distribution. In the final
step of Bayesian modeling of the task, this estimate distribution is computed.

Thus far, we have described the general process of modeling a perceptual task

using a Bayesian approach. In the dissertation, we use Bayesian models to under-

stand visual perceptual inference. In the following section, we discuss a particular

20



1.4. VISUAL SEARCH

family of vision based perceptual tasks, known as visual search tasks. Specifically,

we elaborate the process of Bayesian modeling in a simple example of such a task

and discuss the possible questions which need to be explored further. We will

examine those questions in extensive details in subsequent chapters.

1.4 Visual search

Visual search is a common example of vision based perceptual task. This involves

an active scan of multiple objects for a particular object or feature of interest, re-

ferred as the target among other objects or features, the distractors. Finding a friend

in a large crowd or finding a particular set of keys among other similar items, or

locating an insect hidden in the corner are some examples of visual search from

our everyday life. These examples also highlight the importance of performing

visual search in our normal life. But, doing psychophysics with natural scenes

is challenging. The natural scenes are high-dimensional and highly structured.

They are so rich in content that a single mathematical model may not be plausible

to capture all the characteristics of a scene. Moreover, noise in natural scenes is

largely unknown and perhaps has a complex correlation structure that is harder

to capture with simple probability distributions. Further, a distinct object classifi-

cation may be unavailable in case of natural scenes. Therefore, for the purposes of

psychophysical studies conducted in the laboratory, quite simplified visual search

tasks are considered. These psychophysical tasks usually contain some highly dis-

tinct objects that only differ along a small number of stimulus dimensions. Clearly,
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these simple and fabricated tasks do not replicate natural scenes; however, they

serve as a practical tool for understanding the perceptual inference computation

performed by the brain.

The ability to consciously locate an object (target) among a complex array of

stimuli (distractors) has been extensively studied in psychophysics over many

years [108, 37, 148, 43, 41, 8, 42, 111, 112, 7, 152, 94, 98, 99]. These studies also

validate the modeling of our perceptual behavior using Bayesian approach.

1.4.1 An example of a target detection task

We now discuss a specific example of visual search task, namely, a target detection

task. Our example is similar to the one discussed by Ma et al. in [93]. We consider

a simple task with only two stimuli. The observer needs to report whether a target

stimulus is present in the scene. Stimulus orientation is the task-relevant feature.

We elaborate the mathematical steps involved in the Bayesian modeling of the

task.

1.4.1.1 Step 1: Generative model

The observer is presented with two stimuli on a visual display. These stimuli

could either be bars, gratings, or ellipses characterized by their orientation or ec-

centricity. A target is a stimulus with a particular characteristic. We assume that a

target is a stimulus with vertical orientation, denote its orientation by sT = 0, and

measure stimulus orientation relative that of a target. A distractor is defined as the
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stimulus having a non-target orientation. The observer reports whether a target

is present in the visual display on each trial. We denote the target presence by a

binary variable, T, so that T = 1, if a target is present and T = 0 if absent. The

target is present with a probability of 0.5 in each trial and it can be present at either

of the two locations. Thus, the location of the target is unknown to the observer

and hence, the observer needs to take this into account by marginalizing over

both possible target locations. Figure 1.4(C) shows the three possible displays in

the task. We also represent the target presence at location, i, by a binary variable,

Ti and further define the spatial location vector as T = (T1, T2). We denote the

stimulus orientation of the ith stimulus by si.

When the target is absent, i.e., T = 0, each stimulus orientation is drawn from

a normal distribution with mean 0 and standard deviation, σs. We write (see no-

tation in Appendix A)

si|T = 0 ∼ N (0,σ2
s ). (1.7)

We denote the probability density function of the normal distribution, N (0,σ2
s )

by f (si; 0,σ2
s ), where

f (si; 0,σ2
s ) =

1√
2πσ2

s
exp

(
−

s2
i

2σ2
s

)
.

The assumption of the Gaussian noise is reasonable since the stimuli are not placed

too close to each other on the screen. When T = 1, one of the stimuli is chosen

as the target with uniform probability. If the target is present at location, j, for

j ∈ {1, 2}, then s j = sT = 0 and we choose the distractor orientation according

to Eq. (1.7). We assume that the observer makes independent (between locations)
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and noisy measurement of the stimulus, si, denoted by xi, which is drawn from

the following normal distribution

xi|si ∼ N (si,σ2
i ). (1.8)

The noise, σi determines the uncertainty in the ith measurement of the stimulus,

si and is known to the observer. The generative model of the task is illustrated in

Figure 1.4(A).

1.4.1.2 Step 2: Inference

The optimal Bayesian observer infers target presence based on the stimulus mea-

surements and using the information about the generative model. The observer

computes the log posterior ratio (LPR) of target presence from the measurements,

x1 and x2 as

d(x1, x2) = log
p(T = 1|x1, x2)

p(T = 0|x1, x2)
, (1.9)

and reports ”target present” if d > 0 and ”target absent” otherwise. The variable,

d is known as the Bayesian decision variable. Using the Bayes’ formula, we rewrite

the above equation as the sum of log likelihood ratio (LLR) and log prior ratio,

d(x1, x2) = log
p(x1, x2|T = 1)
p(x1, x2|T = 0)

+ log
p(T = 1)
p(T = 0)

.

Since the target is present or absent with equal probability, we have a uniform

prior over T, and therefore,

d(x1, x2) = log
p(x1, x2|T = 1)
p(x1, x2|T = 0)

. (1.10)
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Figure 1.4: Bayesian modeling of a simple target detection task with two stim-
uli. (A) The generative model. The binary variable, T describes the target pres-
ence in a trial. The two stimuli, s1 and s2 are chosen conditioned on T. When
T = 1, one of the stimuli is a target with a vertical orientation, while the orien-
tation of the other stimulus is chosen randomly from a normal distribution. The
observer makes noisy and independent measurements, x1 and x2 of the two stim-
ulus. (B) The inference process. The observer combines the two measurements
to compute a decision variable, d(x1, x2) and infers an estimate, T̂ of the world
state variable, T. The decision variable, d(x1, x2) is a log posterior ratio of the
probability of reporting ”target present” and ”target absent”, given the observer’s
measurements. If d > 0, the observer reports target is present and absent other-
wise. (C) Example displays in the task. Since there are only two stimuli and one
target, three types of visual displays can be presented to the observer. In the first
two displays, the target is present to the left and right of the cross in the center.
When there is no target, both stimuli are distractors and have randomly chosen
orientations. The bottom display illustrates such an example.
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We compute the numerator in Eq. (1.10) by marginalizing over the two possible

target locations and stimuli, si in the following equations

p(x1, x2|T = 1) =
2

∑
j=1

p(x1, x2|Tj = 1, T = 1)p(Tj = 1|T = 1)

=
1
2

2

∑
i, j=1
i 6= j

p(x j|Tj = 1)p(xi|Ti = 0)

=
1
2

2

∑
i, j=1
i 6= j

ˆ
p(x j|s j)p(s j|Tj = 1)p(xi|si)p(si|Ti = 0)ds jdsi

=
1
2

2

∑
i, j=1
i 6= j

ˆ
f (x j; s j,σ2

j )δ(s j − 0) f (xi; si,σ2
i ) f (si; 0,σ2

s )ds jdsi

=
1
2

2

∑
i, j=1
i 6= j

f (x j; 0,σ2
j ) f (xi; 0,σ2

i +σ2
s ) (using Eqs. (B.1) and (B.4))

=
1
2

2

∑
i, j=1
i 6= j

1

2π
√
σ2

j (σ
2
i +σ2

s )
exp

(
−

x2
j

2σ2
j
−

x2
i

2(σ2
i +σ2

s )

)
.

When the target is absent, both stimuli are distractors. Thus, we compute the

denominator in Eq. (1.10) as

p(x1, x2|T = 0) = p(x1|T1 = 0)p(T1 = 0|T = 0)p(x2|T2 = 0)p(T2 = 0|T = 0)

=

ˆ
p(x1|s1)p(s1|T1 = 0)p(x2|s2)p(s2|T2 = 0)ds1ds2

=

ˆ 2

∏
i=1

(
f (xi; si,σ2

i ) f (si; 0,σ2
s )dsi

)
=

2

∏
i=1

f (xi; 0,σ2
i +σ2

s ).
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We now substitute the above computed individual likelihoods for target present,

and absent cases to obtain an expression for Bayesian decision variable, d:

d(x1, x2) = log
1
2

2

∑
i, j=1
i 6= j

f (x j; 0,σ2
j ) f (xi; 0,σ2

i +σ2
s )

f (x j; 0,σ2
j +σ

2
s ) f (xi; 0,σ2

i +σ2
s )

= log
1
2

2

∑
j=1

f (x j; 0,σ2
j )

f (x j; 0,σ2
j +σ

2
s )

= log

1
2

2

∑
j=1

(
σ2

j +σ
2
s

σ2
j

)1/2

exp

−
x2

j

2σ2
j︸ ︷︷ ︸

I

−
x2

j

2(σ2
j +σ

2
s )︸ ︷︷ ︸

I I


 . (1.11)

The above expression gives us the decision variable on the task. An ideal Bayesian

observer performing the above described target detection task makes a decision

based on this decision variable. The decision variable, d(x1, x2) depends on the

precision of the measurement and also on the external variability of the distractor,

σ2
s . Each exponent term in the above expression provides an evidence towards jth

stimulus being a target: (I) if the jth measurement is close to the vertical orienta-

tion, this term corresponds to an increased likelihood for the jth stimulus being

the target, while (II) the second term decreases such a likelihood. The appropri-

ate scaling of the two measurements by inverse of the external and internal noise

variances determine the correct likelihood for the jth stimulus being the target or

a distractor.
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1.4.1.3 Step 3: MAP estimate distribution

We denote the observer’s MAP estimate of T by T̂. When d > 0, the MAP estima-

tion is to report ”target present” and ”target absent” otherwise. The distribution

of the MAP estimate describes the behavior of the Bayesian observer across many

trials and involves computing the probabilities that the observer will report ”tar-

get present” when the target is actually present and when it is absent. That is, we

need to compute p(T̂ = 1|T = 1) and p(T̂ = 1|T = 0). These probabilities are

also known as the hit and false-alarm rates, and are computed given a fixed set of

stimulus, s1 and s2:

p(T̂|s1, s2) =

ˆ
p(T̂|x1, x2)p(x1|s1)p(x2|s2)dx1dx2

=

ˆ
δT̂,sgn(d(x1 ,x2))

p(x1|s1)p(x2|s2)dx1dx2.

Here δ represents the Kronecker delta function. As the decision variable, d com-

puted in Eq. (1.11) is a non-linear function of x1 and x2, the above integral is ana-

lytically intractable, and hence needs to be approximated using Monte Carlo sim-

ulations in practice. This completes the final step in the Bayesian modeling of the

above described target detection task.

1.4.1.4 A suboptimal model

Eq. (1.11) describes the decision variable for an optimal Bayesian observer to per-

form the task. However, it is not necessary that the observer will follow this rule.

Specifically, it is possible that an observer may not be optimal in making a deci-

sion on the task and may use some other decision strategy to make a decision.

28



1.4. VISUAL SEARCH

The decision variable, d(x1, x2) computed in Eq. (1.11) is clearly non-linear and

implicitly depends on other parameters that characterize the structure of the task.

For instance, the external variance of the distractor stimulus, σ2
s and the noise in

making a measurement, σ2
i clearly affect this variable. We generally assume that

the observer is aware of the internal noise with which the measurement is made,

but he might not know the external variance that determines the structure of the

task. In such a case, the observer would use an incorrect assumption about the

generative model in making a decision. Further, the observer could also make a

guess on each trial without using any information about the task.

Therefore, the following questions frequently emerge in analyzing the responses

of the observer on such tasks: What model does the observer follow in making a

decision on the task? How do we infer the parameters of a model that fit the sub-

ject’s data? And in the case of multiple models, how can we compare models to

select the one that best describes the experimental data? We will examine these

questions in great length in Chapters 3 to 5 and present detailed analysis for a

particular target detection task described in Chapter 2.

We now consider a suboptimal model to understand the observer’s behavior

on the target detection task. Let us assume that the observer is not optimal and

instead makes a decision based on the minimum of the two measurements of the

stimuli. If the minimum of the measurements is below some threshold, θ, the

observer reports ”target present”, and absent otherwise. We denote the decision

variable for such a model by dmin(x1, x2) and define

dmin(x1, x2) = min(|x1|, |x2|). (1.12)
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The observer compares whether dmin(x1, x2) < θ to make an estimate T̂ = 1.

We note that the observer’s decisions based on the decision variable, dmin(x1, x2)

are suboptimal. The threshold models have been used in many earlier studies to

model subjects’ responses on psychophysical tasks [112, 152, 8, 42, 55, 94].

Figure 1.5 compares the performance of an observer as a function of the stan-

dard deviation of the stimulus distribution,σs, for the optimal and threshold mod-

els. Here we assume that the observer uses equal precision for both measure-

ments, that is, σ2
1 = σ2

2 = σ2. We consider the performance of the observer based

on the following models: (i) optimal model, (ii) threshold model with θ = 1
2σ , (iii)

threshold model with θ = σ , and (iv) threshold model with θ = 3
2σ . Thus, we

consider threshold models where the parameter θ depends on the precision of the

observers’ measurements.

We note that the performance increases for all models as the standard devia-

tion of distractor orientations,σs increases. This is expected since the task becomes

easier as the orientations of the distractors deviates away from that of the target.

Also, we observe that the performance predicted by threshold models is lower as

compared to the optimal model when the threshold parameter, θ is small. How-

ever, for a sufficiently large threshold value (here θ = 3
2σ), the observer behaves

similarly according to both optimal and threshold models at large values ofσs. We

find that all threshold models closely predict the performance as that of the opti-

mal model at low values of standard deviation between distractors. At low values

of σs, the distractors are more likely to have orientations close to that of the target
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Figure 1.5: Performance of an observer in a simple target detection example
based on different models. Proportion of correct responses as a function of the
standard deviation of distractor orientations,σs for an observer based on different
models. The optimal model has the maximum performance at all values of σs
than other threshold models. A lower performance is observed at low standard
deviations for all models since it becomes difficult to detect a target on the task
among distractors that have relatively similar orientations to that of the target. As
the standard deviation of the distractor orientations increases, the task becomes
relatively easier and the performance increases for all models. The model with
high threshold parameter, θ predicts a similar performance of the observer as that
of the optimal model. This indicates that it is difficult to choose a model that is
most consistent to describe the observer’s behavior.
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(see Eq. (1.7)). In such a case, it will be difficult for the observer to make a deci-

sion and will have lower performance as predicted by both optimal and threshold

models.

Therefore, the decisions of the observer depend on the model parameters and

the precision of the measurements. In order to understand the responses of the

observer, we need to estimate these model parameters and also determine the

precision level of observer’s measurements. Using these parameter estimates, we

make predictions for the observer’s responses based on different plausible mod-

els. These models can be very close in their predictions (for example, optimal and

threshold model with θ = 3
2σ in Figure 1.5) and it may be difficult to find the

model that is most consistent with the observer’s behavior.

1.4.2 Generalizations

In general, visual search task comprises of group of tasks: target detection - deter-

mining whether a target is present or not in a scene; target localization - finding

the location of the target when the target is always present and target discrimina-

tion or classification - classifying the target to one of the pre-defined categories. We

only focus on the target detection tasks in the dissertation and explore different

parameter relations in these tasks.

The target detection task described in Section 1.4.1 is an extremely simple ex-

ample of a target (or visual) search task with only two stimuli. However, in gen-

eral, we make decisions in presence of a large number of distractors. For instance,
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in order to find a friend in a large crowd, we need to carefully scan each individ-

ual and undergo an identification process. Also, the distractor orientations may

not always be independent. They could possess an unknown complex structure

and we must account for such structures to make correct decisions.

Several research studies have considered the visual search tasks with a reason-

ably large number of stimuli [8, 75, 44, 111, 98, 135, 42, 99, 151, 94, 150, 137]. Some

of them have focused on analyzing performance as a function of set-size [111, 8,

42, 135, 44, 136, 98, 99]. Furthermore, the experimental studies done by Ma et

al. [94, 151, 98, 99] have explored the behavior of the subjects on a search task with

two types of distractors: when all distractors have identical orientation and when

the distractors possess different independent orientations.

In addition to the possibility of varying set size and structural orientations

of the distractors, the task could also have multiple targets in the visual display.

Such a possibility has not been explored in scientific studies. We thus examine this

possibility with complete mathematical details in Chapter 7 and further analyze

the impact of different parameter correlations on the performance of an optimal

observer on the task. In real life, there are several examples where multiple targets

are present and our brain needs to process the information to find at least one of

them. For instance, we may need to find a blue marker in a box of black and blue

markers. There could be more than one blue marker present in the box among

black markers that serve as distractors.

Thus far, we have described the principles of Bayesian approach used in build-

ing perceptual models. These concepts are fundamentals for the work presented
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1.5. OUTLINE OF THE DISSERTATION

in the dissertation. We now present the outline of the dissertation and the main

questions examined in the following chapters.

1.5 Outline of the dissertation

The dissertation is split into two parts. In the first part, we study how humans

make decisions in response to structured input. In the second part, we examine

how structured measurements affect the decisions along with structured stimulus

input.

Visual search for a single target among distractors, with a single relevant fea-

ture has been studied extensively. These studies have largely focused on two types

of distractors: distractors with identical orientations and with independent ran-

dom orientations. Therefore, either distractors are exactly alike or they differ from

each other across trials. In a target-present trial with identical distractors, the tar-

get would be an odd-ball stimulus, and hence can be detected easily. However, if

the distractors have independent orientations, there would be hardly any struc-

ture in the scene that could possibly help the observer in finding a target. The

experimental studies [94, 99] showed that humans decisions are consistent with

optimal Bayesian models in case of both types of distractors. But, these two dis-

tractor conditions represent the extreme structural possibilities: from high struc-

ture to none. However, natural scenes possess more complex structure; and the

objects in the scenes can be correlated with each other in many possible ways.

Therefore, this raises the question how humans make decisions in response to
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1.5. OUTLINE OF THE DISSERTATION

weakly structured input? In particular, do humans take into account the weak

stimulus correlations and do they make near-optimal decisions in such a case?

We examine these questions in Chapters 2 to 5. We consider a target detec-

tion task with N stimuli and one target. The distractors are assigned orientations

that have different amount of correlations. The varying amount of correlations

among distractor orientations allows us to introduce structure in the visual scene.

The structure of these correlations must be taken into account to make optimal

decisions about target presence. In Chapter 2, we derive the mathematical theory

for a Bayesian optimal observer. We also performed a psychophysical experiment

based on the design of the task and analyze the collected human subjects’ data in

Chapters 4 and 5.

We explore whether humans are optimal in inferring correct correlation strength

among distractor orientations. We test several Bayesian models that could possi-

bly explain subjects’ behavior on the experiment and fit them to the data. The

fitting of a model requires finding the model parameters that provides best fit to

the subjects’ responses. Further, we need model selection techniques to find the

best one. We describe the maximum-likelihood parameter estimation and model

comparison techniques in details in Chapter 3. We use these techniques to fit dif-

ferent model parameters in Chapter 4 and select the best model for the data in

Chapter 5.

For the purposes of our analysis in Chapters 2 and 5, we have assumed the

noise in the measurements to be independent and normally distributed. Both the
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assumptions about independence and Gaussianity can be questioned. In particu-

lar, there is some evidence that neural correlations can be present at long distances

in visual field suggesting that sensory measurements will be correlated [39, 31, 30,

124]. However, much of the visual search studies lack the assumption about mea-

surement correlations in the sensory measurements. We thus focus on the effects

of such an assumption on the performance in categorical and global perceptual

judgements. To make a correct decision in this case, the observer needs to take

into account not only the correlations between the measurements, but also the

statistical structure of the stimuli.

In the second part of the dissertation (Chapters 6 and 7), we explore the joint

effects of measurement and stimulus correlations in a family of visual search tasks.

To investigate how the interaction between both correlations, stimulus and mea-

surement, can affect the decisions of an ideal observer, we consider the assump-

tion of correlated sensory measurements in the target detection task described

in Chapter 2. Thus, in Chapter 6, we study a target detection task with a sin-

gle target and assume that the sensory measurements are correlated following a

multivariate normal distribution. We provide complete details of the analytical

computations that an ideal observer follows to make correct decisions on the task.

We analyze the impact of statistical structure of the scene along with measurement

correlations on the performance of the ideal observer.

Further, in Chapter 7, we continue with our examination and analysis in the

case of multiple targets in the detection task. Multiple targets having identical

orientation would introduce more statistical structure in the scene as compared
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to a single target. Even if the distractors possess independent orientations, hav-

ing multiple targets increase the chance of detecting a target in a pool of stimuli.

Therefore, we inspect how external statistical structure present interacts with the

structure of the measurements to affect the decisions of the observer. In particular,

we analytically and numerically analyzed how the performance of the ideal ob-

server behaves as a function of different parameters that determine the structure

in the external scene and in the sensory measurements. We find that the perfor-

mance changes considerably in the case of multiple targets, while it remains un-

changed when only a single target is present. Therefore, the accuracy of decisions

on these visual search tasks are greatly influenced by the relationship between the

stimulus and measurement correlations.
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Chapter 2
Stimulus correlations in a target

detection task

Bayesian models have been successfully used to study perceptual behavior. Many

studies have used these quantitive models to show that humans perform near-

optimally on simple perceptual tasks. That is, optimal Bayesian models success-

fully explained the behavior of human observers on these tasks. These models

assume that observers make best possible decisions given the uncertain and noisy

sensory measurements.

A number of recent studies have analyzed human behavior in simplified scenes

containing multiple objects. Human behavior was found to be close to Bayes-

optimal on different psychophysical tasks: visual search [94, 98, 99], sameness

judgement [151], and change detection [75]. However, many of the visual search
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studies have only considered two types of distractors: homogeneous and heteroge-

neous distractors [147, 37, 162, 105, 152, 125, 94, 98, 106, 99]. Homogeneous con-

ditions have identical distractors, while heterogeneous conditions have indepen-

dent, randomly oriented distractors. These studies considered the orientations

of homogeneous distractors to be same across all trials, while they varied the

orientation of distractors across experimental trials in the heterogeneous condi-

tion. Thus, orientations of the distractors in the homogeneous condition were

predictable from trial to trial.

Recent studies done by Mazyar et al. [99] studied the human behavior on a

target detection task under the violation of trial-to-trial predictability in the case

of homogeneous distractors. They used Gaussian distributions to randomly draw

the orientation of distractors in the case of homogeneous condition. They also

performed experiments to study human decisions in response to heterogeneous

distractors and found that humans were near-optimal in detecting a target among

both types of distractors.

However, their studies were also limited to homogeneous and heterogeneous

distractors. By contrast, visual stimuli in natural scenes possess a complex and

higher-order structure. The orientations of the objects in natural scenes are corre-

lated to different extent with each other. It is therefore important to examine how

visual perception is affected by structured input. Specifically, to understand how

differently correlated input affect our decisions.

We examine these questions in a psychophysical task. We study the decisions

of human observers on a target detection experiment under the effect of structured
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input. We introduce structure in visual scenes by varying the amount of correla-

tions between distractor orientations. We note that homogeneous condition refers

to perfectly correlated (identical) distractors, while heterogeneous distractors are

uncorrelated. In our study, we interpolated between the heterogeneous and the

homogeneous conditions, and studied the intermediate regimes of partial correla-

tions. We are interested in understanding how human observers make decisions

in response to differently correlated (uncorrelated, partially, and perfectly corre-

lated) stimuli. The intermediate regime of correlations can be challenging from

an observer’s point of view, since the stimuli are only partially correlated, and

only introduce a weak structure in the scenes. The observer needs to take into ac-

count the strength and structure of the stimulus correlations to make an optimal

decision.

Therefore, we examine the following questions in our study: Do humans take

into account the strength and structure of the stimulus correlations? And if they

do, can they make near-optimal decisions? We provide answers to these ques-

tions for the target detection task in Chapter 4. We note that visual search is one

particular example of a task where these questions are relevant. They are more

generally applied to a variety of perceptual tasks.

We begin this chapter with the description of the model for the target detection

task. We continue with the derivation of the inference process for an optimal

Bayesian observer. An ideal observer makes decisions according to the derived

decision rule to infer target presence on the task. Later in the chapter, we present

the details of the task based experiments we have conducted.
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2.1. GENERATIVE MODEL

2.1 Generative model

We consider the following target detection task: An observer is presented with N

stimuli. The observer reports whether a vertical target stimulus is present or ab-

sent among a group of distractors. Stimuli are characterized by their orientations.

We denote the target orientation by sT = 0. We represent target presence by the

binary variable, T, so that T = 1 if the target is present, and T = 0 if absent. This

notation is consistent with studies done by Ma et al. [94, 98, 99]. Target presence

at location i is similarly represented by a binary variable, Ti. We also denote the

spatial location vector by T = (T1, T2, · · · , TN). In each trial, the target is present

with a 1/2 probability.

We denote the orientations of the stimuli by s = (s1, s2, · · · , sN). When T = 0,

the target is absent and all stimuli are distractors. Therefore, T = (0, 0, · · · , 0) and

we write

p(T|T = 0) = δ(T− 0N).

Here a subscript denotes the length of a vector, so that the vector 0N has N compo-

nents. In this case, the orientations of the stimuli are drawn from an N-dimensional

multivariate normal distribution with mean vector, sD = (sD, sD, · · · , sD) and co-

variance, Σs, and we write

s|T = 0 ∼ N (sD, Σs). (2.1)
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We denote the probability density function of the multivariate normal distribu-

tion, N (sD, Σs) by f (s; sD, Σs), where

f (s; sD, Σs) =
1√

(2π)N|Σs|
exp

(
−1

2
(s− sD)

TΣ−1
s (s− sD)

)
. (2.2)

The N × N covariance matrix, Σs, contains identical diagonal entries, σ2
s (vari-

ances) and identical off-diagonal entries, ρsσ
2
s (covariances):

Σs =



σ2
s ρsσ

2
s · · · ρsσ

2
s

ρsσ
2
s σ2

s · · · ρsσ
2
s

... . . . ...

ρsσ
2
s ρsσ

2
s · · · σ2

s


. (2.3)

We let the pairwise correlation coefficient, ρs, vary between 0 and 1. When T = 1,

one of the N possible location is chosen with equal probability and the stimuli at

that location is assigned the target orientation. If 1 j represents the N-dimensional

vector having jth entry as 1 and rest zeros, then

p(T|T = 1) =
1
N

N

∑
j=1
δ(T− 1 j). (2.4)

When the target is present at location j, for some fixed j ∈ {1, 2, · · · , N}, we have

p(s j|Tj = 1) = δ(s j − sT). (2.5)

In such a case, the distractors will be present at all locations but the jth one. There-

fore, we can decompose the Eq. (2.4) into target and distractors’ locations:

p(Tj = 1|T = 1) =
1
N
δ(Tj − 1), and p(T\ j = 0N−1|T = 1) = δ(T\ j − 0N−1).
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The vector T\ j is obtained by removing the jth location from the spatial loca-

tion vector, T. In the target present trial, the orientations of the N − 1 distrac-

tors are denoted by s\ j (see notation in Appendix A). They are drawn from an

(N − 1)-dimensional multivariate normal distribution with (N − 1)-dimensional

mean vector sD\ j and covariance, Σs\ j (conditioned on jth stimuli being the target).

We write

s\ j|T = 1 ∼ N (sD\ j , Σs\ j), (2.6)

where the (N − 1)× (N − 1) covariance matrix, Σs\ j is obtained by removing the

jth row and the jth column of Σs.

We assume that an observer makes a measurement, xi, of the presented stim-

ulus, si, for i ∈ {1, 2, · · · , N}. It is commonly assumed that these measurements

are noisy but unbiased and are normally distributed [94, 98, 99, 151]. Therefore,

we assume that at each location i,

xi|si ∼ N (si,σ2
i ). (2.7)

Moreover, we consider the measurement noise to be independent between loca-

tions. Hence, for the vector of measurements, x = (x1, x2, · · · , xN), we write

x|s ∼ N (s, Σx) =
N

∏
i=1
N (si,σ2

i ). (2.8)

Here Σx is an N × N diagonal matrix with entries σ2
1 ,σ2

2 , · · · ,σ2
N on the diagonal.

The optimal-observer model of the task is illustrated in Figure 2.1.
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Figure 2.1: Statistical structure of relevant task variables in the optimal-
observer model for a target detection task with stimulus correlations. (A) Gen-
erative model. The nodes represent the variables in the task and arrows indicate
conditional dependencies between them. The binary variable, T represents tar-
get presence for T = 1 and absent when T = 0. The standard deviation, σs and
the pairwise correlation coefficient, ρs determine the structure of the stimulus,
s = (s1, s2, · · · , sN) in the task. An observer makes a measurement, xi, of each
presented stimulus si. These measurements are assumed to be noisy and inde-
pendent between locations. (B) Inference process. The optimal observer infers T
by ”inverting” the generative model. The observer computes a decision variable,
d(x) based on the measurements, x and it is given by the log-posterior ratio be-
tween the two possibilities, log (p(T = 1|x)/p(T = 0|x)). The sign of d(x) gives
the optimal estimate of T and it is denoted by T̂.

44



2.2. INFERENCE PROCESS

2.2 Inference process

The observer infers target presence based on the stimulus measurements, x and

knowledge of the process that generated the stimulus, also called the generative

model (Figure 2.1(A)). Specifically, an optimal observer computes the probability

of T = 0 and the probability of T = 1, given x. The observer then chooses the

option with highest probability. This is equivalent to computing the log posterior

ratio,

d(x) = log
p(T = 1|x)
p(T = 0|x)︸ ︷︷ ︸

log posterior ratio

(2.9)

and reporting ”target present” when d(x) > 0, and ”target absent” otherwise. The

relation, d(x) > 0 to make an estimate is known as the Bayesian decision rule and

d(x) itself is referred as the Bayesian decision variable. Here d(x) = 0 represents the

decision boundary and 0 is also called as the decision criterion.

By applying Bayes’ theorem in the above equation we obtain

d(x) = log
p(T = 1|x)
p(T = 0|x)︸ ︷︷ ︸

log posterior ratio

= log
p(x|T = 1)
p(x|T = 0)︸ ︷︷ ︸

log likelihood ratio

+ log
p(T = 1)
p(T = 0)︸ ︷︷ ︸

log prior ratio

. (2.10)

Here p(T = 1) denotes the observer’s prior belief that the target is present. Based

on the above equation, the observer reports ”target present” when the log-likelihood

ratio is greater than the negative log prior ratio, i.e.,

log
p(x|T = 1)
p(x|T = 0)

> − log
p(T = 1)
p(T = 0)

.

Also, it is easy to see that any change in prior results in shifting of the decision

criterion, thus prior has a large effect in the inference process of the observer. The
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optimal observer uses a uniform prior on T to compute the log-likelihood ratio

and the required decision variable. We denote the log-likelihood ratio for the task

by LST(x) and the decision variable by dST(x).

2.2.1 The log-likelihood ratio

The observer needs to marginalize over intermediate variables, T and s to com-

pute the log-likelihood ratio. The marginalization process is described in Sec-

tion 1.3.4.1 and illustrated with an example in Section 1.4.1. In this case, we com-

pute the log-likelihood ratio in the following manner:

LST(x) = log
p(x|T = 1)
p(x|T = 0)

= log
∑
T

p(x|T, T = 1)p(T|T = 1)

∑
T

p(x|T, T = 0)p(T|T = 0)

= log

∑
T

(
p(x|T, T = 1)

1
N

N

∑
j=1
δ(T− 1 j)

)
∑
T

p(x|T, T = 0)δ(T− 0N)

= log
1
N

N

∑
j=1

(
∑
T

p(x|T, T = 1)δ(T− 1 j)

)
∑
T

p(x|T, T = 0)δ(T− 0N)

= log
1
N

N

∑
j=1

p(x|T = 1 j)

p(x|T = 0N)

= log
1
N

N

∑
j=1

ˆ
p(x|s)p(s|T = 1 j)ds

ˆ
p(x|s)p(s|T = 0N)ds

. (2.11)
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Here δ is the generalized Kronecker delta function defined on RN:

δ(z) =


1, if and only if zi = 0 for all 1 ≤ i ≤ N,

0, otherwise.

We further simplify the above expressions by decomposing the vector s into target

stimulus, s j and distractors, s\ j. Similarly, we break the vector x into a target

measurement, x j and distractors measurements, x\ j. Similar to Σs\ j , we define

matrix Σx\ j obtained by removing the jth row and column of matrix Σx, so that

x\ j|s\ j ∼ N (s\ j, Σx\ j). (2.12)

Thus, we obtain

LST(x) = log

 1
N

N

∑
j=1

ˆ
p(x j|s j)p(s j|Tj = 1)p(x\ j|s\ j)p(s\ j|T\ j = 0N−1)ds jds\ jˆ

p(x|s)p(s|T = 0)ds



= log

 1
N

N

∑
j=1

ˆ
f (x j; s j,σ2

j )δ(s j − sT) f (x\ j; s\ j, Σx\ j) f (s\ j; sD\ j , Σs\ j)ds jds\ jˆ
f (x; s, Σx) f (s; sD, Σs)ds

 .

We now apply the product and integral rules for normal distributions in Eqs. (B.3)

and (B.4), and denote

C = Σs + Σx and C\ j = Σs\ j + Σx\ j . (2.13)

The matrix C\ j can also be obtained by removing the jth row and column of matrix

C. In the case of positive definite covariance matrices, i.e., for ρs 6= 1, we integrate
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and obtain the following expression for the log-likelihood ratio,

LST(x) = log
1
N

N

∑
j=1

f (x j; sT ,σ2
j ) f (x\ j; sD\ j , C\ j)

f (x; sD; C)

= log

[
1
N

N

∑
j=1

√
|C|

σ2
j |C\ j|

exp

(
−
(x j − sT)

2

2σ2
j

− 1
2
(x\ j − sD\ j)

TC−1
\ j (x\ j − sD\ j)

+
1
2
(x− sD)

TC−1(x− sD)

)]
. (2.14)

We further reduce the above expression by computing the determinant and in-

verse of matrices C and C\ j. The matrices C and C\ j have rank 1, therefore, we

use the matrix determinant lemma and the Sherman-Morrison formula to com-

pute their determinants and inverses, respectively.

2.2.1.1 Determinants and inverses of matrices C and C\ j

We decompose the matrix C =



σ2
s +σ2

1 ρsσ
2
s · · · ρsσ

2
s

ρsσ
2
s σ2

s +σ2
2 · · · ρsσ

2
s

... . . . ...

ρsσ
2
s ρsσ

2
s · · · σ2

s +σ2
N


as



σ2
s (1− ρs) +σ2

1 0 · · · 0

0 σ2
s (1− ρs) +σ2

2 · · · 0
... . . . ...

0 0 · · · σ2
s (1− ρs) +σ2

N


︸ ︷︷ ︸

D

+ρsσ
2
s



1 1 · · · 1

1 1 · · · 1
...

...
...

...

1 1 · · · 1


︸ ︷︷ ︸

J
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and compute the determinant of C using the matrix determinant lemma in Ap-

pendix B.2,

|C| = |D + ρsσ
2
s J| = |D + ρsσ

2
s 1 1T| = (1 + 1TD−11) |D|,

where 1 is a column vector of ones.

Since D is a diagonal matrix, |D| =
N

∏
i=1

(
σ2

s (1− ρs) +σ
2
i

)
and

(D−1)k,l =


1

σ2
s (1−ρs)+σ2

k
, if k = l,

0, otherwise.

We also define

wi =
1
σ2

i
, w̃i =

1
σ2

s (1− ρs) +σ2
i

, W̃ =
N

∑
i=1

w̃i, and W̃\ j =
N

∑
i 6= j

w̃i, (2.15)

and obtain

|C| =
(

1 + ρsσ
2
s W̃

) N

∏
i=1

1
w̃i

. (2.16)

Similarly, we compute

|C\ j| =
(

1 + ρsσ
2
s W̃\ j

) N

∏
i 6= j

1
w̃i

. (2.17)

Next, we compute the inverse of matrix C using the Sherman-Morrison For-

mula described in Appendix B.2. Specifically, we obtain

C−1 = D−1 − D−11 1TD−1

1 + 1TD−11
=



w̃1 −αw̃2
1 −αw̃1w̃2 · · · −αw̃1w̃N

−αw̃2w̃1 w̃2 −αw̃2
2 · · · −αw̃2w̃N

...
...

−αw̃Nw̃1 −αw̃Nw̃2 · · · w̃N −αw̃N
2


,

(2.18)
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where

α =
ρsσ

2
s

1 + ρsσ2
s W̃

=
1

1
ρsσ

2
s
+ W̃

. (2.19)

The inverse of matrix C\ j has the same form as C−1 in Eq. (2.18) except that α is

replaced byα\ j with

α\ j =
ρsσ

2
s

1 + ρsσ2
s W̃\ j

=
1

1
ρsσ

2
s
+ W̃\ j

. (2.20)

2.2.1.2 Bayesian decision variable

We continue simplifying the log-likelihood ratio (Eq. (2.14)) in order to obtain an

analytically tractable expression for the decision variable, dST(x) (Eq. (2.9)). First,

we compute the required ratio in Eq. (2.14) of determinants of the two matrices

|C|
σ2

j |C\ j|
=

w j|C|
|C\ j|

=

w j (1 + ρsσ
2
s W̃)

N

∏
i

1
w̃i

(1 + ρsσ2
s W̃\ j)

N

∏
i 6= j

1
w̃i

=
w j (1 + ρsσ

2
s W̃)

w̃ j (1 + ρsσ2
s W̃\ j)

=
w j α\ j

w̃ j α
.

Next, we compute the exponent terms in Eq. (2.14):

(x− sD)
TC−1(x− sD) =

N

∑
i=1

(w̃i −αw̃2
i )(xi − sD)

2 −α
N

∑
i 6=k

w̃iw̃k(xi − sD)(xk − sD),

(x\ j − sD\ j)
TC−1
\ j (x\ j − sD\ j) =

N

∑
i 6= j

(w̃i −α\ jw̃
2
i )(xi − sD)

2

−α\ j

N

∑
i 6=k

i,k 6= j

w̃iw̃k(xi − sD)(xk − sD),
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and combine them to obtain

− (x\ j − sD\ j)
TC−1
\ j (x\ j − sD\ j) + (x− sD)

TC−1(x− sD)

= (w̃ j −αw̃2
j )(x j − sT)

2 − 2w̃ jα(x j − sD)
N

∑
i 6= j

w̃i(xi − sD)

+ (α\ j −α)
N

∑
i,k 6= j

w̃iw̃k(xi − sD)(xk − sD)

=
w̃ j α

α\ j
(x j − sT)

2 − 2w̃ jα(x j − sD)
N

∑
i 6= j

w̃i(xi − sD) + w̃ jαα\ j

(
N

∑
i 6= j

w̃i (xi − sD)

)2

.

We substitute the above expressions in Eq. (2.14) to compute the log-likelihood

ratio and therefore, obtain the following expression for the decision variable

dST(x) = log

 1
N

N

∑
j=1

√√√√ w j(1 + ρsσ2
s W̃)

w̃ j(1 + ρsσ2
s W̃\ j)

exp

−1
2

w j(x j − sT)
2︸ ︷︷ ︸

I

+
1
2
(w̃ j −αw̃2

j )(x j − sD)
2︸ ︷︷ ︸

I I

− w̃ jα(x j − sD)
N

∑
i 6= j

w̃i(xi − sD)︸ ︷︷ ︸
I I I

+
1
2
(α\ j −α)

N

∑
i,k 6= j

w̃iw̃k(xi − sD)(xk − sD)︸ ︷︷ ︸
IV


 . (2.21)

The above equation gives the non-linear decision variable dST(x) in terms of the

stimulus measurement and model parameters: the total number of stimuli, N,

the variance, and covariance between distractors orientations given by σ2
s and

ρs. These parameters govern the statistical structure of the visual stimuli. The

observer must infer these model parameters in order to make an optimal decision

on the task. We assume that the observer is aware of the noise with which the

measurement is made.
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2.2.2 Interpretation of the decision variable

We note that the decision variable computed in Eq. (2.21) depends in an intricate

manner on the model parameters that describe the structure of the stimulus and

its measurements. Although the expression is complex, each term in the expo-

nent has an intuitive interpretation. We can think of the different terms as dif-

ferent pieces of evidence about whether the jth stimulus is a target: (I) if the jth

measurement is close to the target orientation, this term is larger (less negative),

corresponding to an increased likelihood that the jth stimulus is the target; (II)

the second term decreases as the jth measurement approaches the mean distractor

orientation, this corresponds to a decreased likelihood that the jth stimulus is the

target; (III) the third term compares the jth measurement to the sample distractor

mean; if it is large, it is less likely that the jth stimulus is the target; and (IV) the

fourth term can be rewritten in terms of sample covariance of potential distractor

measurements, and in that case a large covariance increases the likelihood that

the jth stimulus is the target. Therefore, different terms in Eq. (2.21) contribute

towards finding the target.

2.3 MAP estimate distribution

We denote the observer’s MAP estimate of T by T̂. The optimal observer responds

T̂ based on the sign of the decision variable dST(x) computed in Eq. (2.21). The

probability of the optimal observer responding T̂ given a fixed stimuli sfixed is
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denoted by p(T̂|sfixed). As illustrated in [151], we compute this probability by

marginalizing over the hypothesized observations x generated by s:

p(T̂|sfixed) =

ˆ
p(T̂|x)p(x|sfixed)dx =

ˆ
δT̂,sgn(dST(x))

p(x|sfixed)dx. (2.22)

This means that the probability of reporting T̂ = 1 is evaluated by averaging over

the observations that are drawn from the distribution x|sfixed and have dST(x) > 0.

But, we note that the decision variable, dST(x), is a non-linear function of x and

hence, the above expression is analytically intractable. Therefore, we use numeri-

cal approximations for our computational purposes. In particular, we apply Monte

Carlo method that is described in Section 3.2.2.

2.4 Suboptimal models

The computations involved in evaluating the exponent terms in Eq. (2.21) are com-

plex and require complete information about the generative model. But in gen-

eral, an observer may not learn and use the correct generative model in making

decisions. The observer can either use an incorrect assumption about the corre-

lation strength, ρs or may not use an equal odd prior for T. In that case, their

inferences will be suboptimal. Therefore, we need to investigate what inference

models are used by the observers to make their decisions and what model param-

eters have been assumed by them to infer their responses. We study a range of

suboptimal models in Chapter 4. For mathematical purposes, we consider two

special variants of the suboptimal models below. These are the cases of homo-

geneous and heterogeneous distractors. The experimental studies [94, 99] have
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well characterized the human behavior on both these conditions; however, they

assumed different probability distributions in the generative model.

2.4.1 Heterogeneous model, ρs = 0

In this model, we assume that the observer does not learn any information about

the stimulus correlations and makes decisions assuming that no structure is present

in the scenes. This amounts to the observer using ρs = 0 in making decisions;

therefore, the decision variable in Eq. (2.21) reduces to the following simplified

expression:

dST(x) = log

[
1
N

N

∑
j=1

√
(1 + w jσ2

s ) exp
(
−1

2
w j(x j − sT)

2 +
1
2

w̃ j(x j − sD)
2
)]

= log

 1
N

N

∑
j=1

√√√√σ2
j +σ

2
s

σ2
j

exp

(
(sT − sD)

x j − (sT+sD)
2

σ2
j +σ

2
s
−
σ2

s (x j − sT)
2

2σ2
j (σ

2
j +σ

2
s )

) .

(2.23)

This condition reflects a suboptimal decision and we would expect the observer

following this model to have a low performance.

2.4.2 Homogeneous model, ρs = 1

We also consider another extreme possibility: the observer may assume that the

stimuli are always maximally correlated and may make decisions using ρs = 1.

That is, the distractors always have a common orientation. We note that when

ρs = 1, the covariance matrix Σs (defined in Eq. (2.3)) is singular. Therefore, the
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conditions to use Eqs. (B.3) and (B.4) are violated. Hence, we cannot use Eq. (2.21)

here.

Instead, we independently compute the decision variable in this case. We note

that the covariance matrix, Σs reduces to a single term σ2
s for ρs = 1, and the

multivariate normal distribution to a one-dimensional Gaussian distribution with

mean, sD and variance, σ2
s . This results in having all distractors with an identi-

cal orientation and we denote that common orientation by s. Thus, the common

distractor orientation follows the Gaussian distribution

s|T ∼ N (sD,σ2
s ).

As before, we compute the log-likelihood ratio by marginalizing over the inter-

mediate variables T and s as in Eq. (2.11) to obtain

LST(x) = log
p(x|T = 1)
p(x|T = 0)

= log
1
N

N

∑
j=1

ˆ
p(x|s)p(s|T = 1 j)ds

ˆ
p(x|s)p(s|T = 0N)ds

.

We now use the assumption about the independence (between locations) of

measurement noise and the product form in Eq. (2.8) for the probability distribu-

tion P(x|s). Also, we decompose the measurement vector x into a target measure-

ment, x j and a common distractor measurement, xi for i 6= j. This gives us
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LST(x) = log


1
N

N

∑
j=1

ˆ
p(x j|s j = sT)p(s j|Tj = 1)ds j

(
N

∏
i 6= j

p(xi|si = s)

)
p(s|T)ds

ˆ ( N

∏
i=1

p(xi|si = s)

)
p(s|T)ds



= log


1
N

N

∑
j=1

ˆ
f (x j; s j,σ2

j )δ(s j − sT)ds j

(
N

∏
i 6= j

f (xi; s,σ2
i )

)
f (s; sD,σ2

s )ds

ˆ ( N

∏
i=1

f (xi, s,σ2
i )

)
f (s; sD,σ2

s )ds

 .

We use Eqs. (B.2) and (B.4) to further compute the expression for the log-likelihood

ratio

LST(x) = log

[
1
N

N

∑
j=1

f (x j; sT ,σ2
j )√√√√(2π)(N−1)

(
1
σ2

s
+

N

∑
i 6= j

1
σ2

i

)
σs

N

∏
i 6= j
σi

exp

−
1
2


N

∑
i 6= j

x2
i
σ2

i
+

s2
D
σ2

s
−

(
N

∑
i 6= j

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i 6= j

1
σ2

i





1√√√√(2π)N

(
1
σ2

s
+

N

∑
i=1

1
σ2

i

)
σs

N

∏
i=1
σi

exp

−
1
2


N

∑
i=1

x2
i
σ2

i
+

s2
D
σ2

s
−

(
N

∑
i=1

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i=1

1
σ2

i







.
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We simplify above expression to obtain

LST(x) = log


1
N

N

∑
j=1

√√√√√√√√√√


1
σ2

s
+

N

∑
i=1

1
σ2

i

1
σ2

s
+

N

∑
i 6= j

1
σ2

i



× exp

−
(x j − sT)

2

2σ2
j

+
x2

j

2σ2
j
− 1

2

(
N

∑
i=1

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i=1

1
σ2

i

+
1
2

(
N

∑
i 6= j

xi

σ2
i
+

sD

σ2
s

)2

1
σ2

s
+

N

∑
i 6= j

1
σ2

i



 .

(2.24)

Assuming the observer uses a uniform prior over T, the above equation represents

the decision variable under the assumption of heterogeneous distractors. Using

the variables defined in Eqs. (2.15) and (2.19), we rewrite the following compact

expression for the decision variable in the case of ρs = 1:

dST(x) = log

[
1
N

N

∑
j=1

√
(1 + w jα\ j) exp

(
−1

2

(
w j(x j − sT)

2 − w jx2
j

+α

(
N

∑
i=1

wixi +
sD

σ2
s

)2

−α\ j

(
N

∑
i 6= j

wixi +
sD

σ2
s

)2
 . (2.25)

The above decision variable characterizes the decision-making behavior of an ob-

server that assumes the distractors to be always perfectly correlated. The observer

making decisions based on this variable will be suboptimal since the correct cor-

relation strength, ρs is ignored and always assumed as 1.

The homogeneous and heterogeneous models explained above are two partic-

ular suboptimal models. We consider a range of other possible suboptimal models
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in Chapter 4. We now provide the details of the experiment designed based on the

target detection task.

2.5 Experimental Methods

We conducted an experiment based on the design of the target detection task de-

scribed in Section 2.1. The experiment was performed under the supervision of

Dr. Wei Ji Ma in the Theoretical Systems Neuroscience laboratory at the Depart-

ment of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.

The aim of our experimental study was to determine whether human observers

use the structures present in the visual scenes to infer their decisions. In the case

that they do, we want to examine whether they are able to infer the correct cor-

relation strength, ρs that is used to generate the experimental displays. If not, we

test several suboptimal models in Chapter 4 and find the one that best explain the

responses of the subjects on the experiment. In the following section, we provide

the details of the experiment.

2.5.1 Subjects

Eleven subjects (6 males and 5 females) participated in the experiment. All sub-

jects had normal or corrected-to-normal acuity and gave informed consent.
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2.5.2 Apparatus and stimuli

Stimuli were generated in Matlab using the Psychophysics Toolbox [24, 113] and

were presented on a 21” LCD monitor with a refresh rate of 60 Hz. Subjects

viewed the displays from a distance of approximately 60 cm. The background

luminance was 33.1 cd/m2. A set of 4 stimuli were shown on each trial. On target-

present trials, the stimulus set consisted of one target and 3 distractors while on

target-absent trials, it contained 4 distractors. A target was present in exactly half

of the trials. Each stimulus was a Gabor patch (or a Gabor filter) with a spatial fre-

quency of approximately 2.67 cycles/deg, a standard deviation of 0.26 deg, and

a peak luminance of 136 cd/m2. A Gabor patch is a sine wave multiplied by a

Gaussian function (additional details can be found in Appendix C). Figure 2.2(A)

shows one example of a Gabor patch. Stimuli were placed on a circle centered at

the fixation cross with a radius of 3.2 degrees of visual angle. The position of the

first stimulus was chosen at random on each trial and other stimuli were placed

in a way so that the angular distance between two adjacent stimuli was always

45◦. The target (sT) and mean distractor orientation (sD) were set to vertical and

used to define the origin. The standard deviation of the distractor distribution σs

was fixed at 15◦ while the correlation coefficient ρs was varied to be 0, 1
3 , 2

3 , and 1

across different experimental sessions.
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2.5.3 Sessions and blocks

The experiment was split into four different sessions. The correlation coefficient

was fixed at 0, 1/3, 2/3, or 1 within a session. The order of the sessions was ran-

domized across subjects. Each session consisted of one practice block of 50 trials

and 6 testing blocks of 150 trials each and lasted for about 50 minutes. A 30 sec

break was provided between blocks. After each block, performance on that block

was revealed to the subject along with the scores of the other subjects who had

completed the same session. Each subject completed a total of 3600 test trials.

All subjects were instructed about the experiment at the beginning of their first

session with a demo consisting of 10 practice trials.

2.5.4 Procedure

Testing trials: Each test trial began with the display of a fixation cross at the cen-

ter of the screen (0.5 sec), followed by the stimulus display containing 4 stimuli

(0.1 sec), and followed by a screen with the fixation cross until the subject re-

sponded. The subject reported whether a target was present or absent through

a key press. Feedback was provided by subsequently coloring the fixation cross

green (correct) or red (incorrect) during the (0.75 sec) inter-trial period. The ex-

periment and time course are shown in Figure 2.2(B).

Practice trials: Each practice trial was identical to a test trial, except that it was

followed by a feedback screen showing the original stimulus display with a blue
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Figure 2.2: Target detection experiment procedure. (A) Gabor patch. Subjects
were presented with 4 stimuli on each trial. Each stimulus was a Gabor patch.
The figure illustrates an example of a Gabor patch from the experiment. (B) Time
course of a test trial. The experiment started with a display of fixation cross in
the center followed by the stimulus display for 0.1 sec. Subjects reported through
a key press whether a vertical stimulus was present in the display. After their
response, a display screen was shown with a green (correct) or red (incorrect)
fixation cross to provide feedback. (C) Time course of a practice trial. Each ex-
perimental session started with 50 practice trials. The procedure of a practice trial
was same as a test trial, except that an additional feedback screen was shown for
2 sec at the end of the trial. The extra display contained the original stimulus
with a blue circle marking the target stimulus if it was present. (D) Sample dis-
plays from different experimental conditions. The experiment was divided in
four different sessions. Each session was characterized by the unique value of the
correlation coefficient ρs ∈ {0, 1

3 , 2
3 , 1} used in generating stimuli. The order of

the sessions was randomized across subjects. This figure shows example displays
from each experimental session.
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circle identifying the target stimulus, when present (Figure 2.2(C)). The data from

practice trials were excluded for the analysis and results purposes.
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Chapter 3
Model fitting and model comparison

Our perception about the true state of the world is based on our sensory infor-

mation along with the prior knowledge of the world state. But it is not clear

what computations the brain performs to combine the information it receives and

makes a decision. Numerous theoretical and experimental studies provide evi-

dence that our perception can be described as a process of probabilistic inference.

In particular, Bayesian models are applied to study human behavior on various

perceptual tasks. Several experimental studies have found that humans are near-

optimal in simple visual perceptual tasks [68, 43, 8, 42, 99, 111, 7, 105, 94, 10, 83,

153, 98]. We note that observers need to have complete knowledge of the under-

lying generative model of the task in order to make the best possible decisions.

However, we may expect that on a complex task or a task with a large number of

latent variables, it may not always be possible for the observers to determine the

correct generative model. Therefore, the relevant question here is what model of
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the world observers use to make their decisions and what are the possible tech-

niques that we can use to compute the predictions of a model for the experimental

data.

In this chapter, we discuss some commonly used techniques of fitting a model

to the responses of subjects on a psychophysical task. We describe the maximum-

likelihood parameter estimation method to find the model parameters that de-

scribe the best fit to an experimental data. Further, we discuss the criteria that

can be used to compare models and find the one that best describes the data. We

present these techniques in a generalized form here, but discuss their applica-

tions, and possible issues in the context of our experimental study (described in

Chapter 2). Specific to our experiment, we begin this chapter with a detailed de-

scription of the experimental data we have collected. Further, we elaborate the

types of psychometric curves we use to represent the subjects’ responses from

our experiment. In the end, we describe how we use different model comparison

criteria specific to the models used to predict our experimental data.

3.1 Experimental data

The set up of our experiment has been described in Section 2.5. Subjects were

presented with a set of 4 stimuli on each experimental trial. The orientations of

the stimuli were drawn randomly across trials. Also, the stimuli were placed at

random locations. As a consequence, each subject was presented with a unique

set of stimuli over the course of the experiment. We thus recorded the collection
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of stimulus orientations presented to the subject. We then recorded whether any

stimulus is a target in the trial, that is, we noted if T = 1 or T = 0. Furthermore,

we documented the response of the subject in each trial as either 0 or 1. Finally, we

measured the exact duration of the stimulus presentation on the display screen.

We note that this duration is actually a constant (100 ms) in the experiment. In

summary, for each subject we recorded the following information on each trial:

1. a set of 4 stimulus orientations, s,

2. the information about the target presence variable T,

3. the subject’s response or the MAP estimate T̂,

4. whether T̂ matches T or not, and

5. the duration of the stimulus presentation.

In the following section, we discuss the methods of obtaining model predictions

for an experimental data and to use these predictions for fitting the subject’s re-

sponses. In our analysis, we evaluate the predictions of a model for each individ-

ual instead of relying on average (over subjects) statistics. Therefore, our model

fitting and model comparison processes are computed based on individual re-

sponses.
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3.2. MODEL PREDICTIONS

3.2 Model predictions

In the experiment, we record the responses of a subject - whether the subject re-

sponded ”target present” or ”absent” on each trial. However, we are not aware

of the sensory measurements with which the subject made a decision on a trial.

Thus, as part of the modeling process, we need to consider what measurements

would have led the subject to make a particular response on the trial. Hence, we

must use a reasonable assumption about the distribution of the measurements.

Moreover, in general, we have no means of measuring what parameters the sub-

ject would have used to make the decision. For instance, the sensory noise with

which the subject made the measurement is unknown to us and we need to esti-

mate it in order to understand the behavior of the subject. Such parameters are

sometimes referred as free parameters of the model and can be estimated from the

data. Therefore, we consider two important issues here: to find the maximum-

likelihood estimates of model parameters based on subject’s data and to make

predictions of the model for the data given those parameters.

Let us consider a model M having a parameter θ. The parameter θ can either

be a scalar or vector quantity given the model. We assume that we have access to a

subject’s responses on K trials in the experiment. We denote the subject’s response

by a binary variable ri and the set of presented stimuli by si on the ith trial. We are

interested in evaluating the model prediction for the response, ri on ith trial given

the model parameter θ. We denote p(ri|si, M,θ) as the probability of the subject

response ri given the stimuli on the ith trial under the model M with hypothesized
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parameter value θ. This is also known as the response probability under the model

M with parameterθ.

3.2.1 Computing response probabilities

We would like to compute the response probability p(ri|si, M,θ) on the ith trial

under model M. This is similar to evaluating the distribution of the MAP estimate

in Eq. (2.22) under the decision variable of the model M. The cases where such

an evaluation is not analytically possible, we use Monte Carlo method [62, 11, 60,

72, 126, 15] for a numerical approximation of the involved integral. The integral

is approximated by the sum which converges to the correct value as the number

of measurement samples increases:

p(ri|si, M,θ) =
ˆ

p(ri|x)p(xi|si, M,θ)dx ≈∑
xi

p(ri|x)p(xi|si, M,θ)

= ∑
xi

δri ,sgn(dM(xi))
p(xi|si, M,θ). (3.1)

Here xi is the hypothesized measurement of the subject on the ith trial and dM(x)

represents the Bayesian decision variable under the model M with parameterθ.

3.2.2 Monte Carlo algorithm

We now describe the Monte Carlo algorithm we implemented for computing the

response probabilities under the assumptions of a model M.

1. The first step is to describe the model M and its parameter(s)θ.
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2. We then derive the Bayesian decision variable, dM(x) under the hypothesis

of the model M.

3. We fix a value of the model parameterθ.

4. For this fixed hypothesized value of the parameterθ, we draw hypothesized

measurements, xi of the subject following Eq. (2.8) on the ith trial in response

to the presented stimulus, si. The stimuli si are used from the experimental

data, and not generated during this step.

5. Using the hypothesized measurements, xi, we evaluate the decision variable

dM(xi) of the model M. Further, we compute the prediction for the subject’s

response, denoted by r̂i, on the ith trial based on the decision rule for the

model M.

6. We then compare the model predicted response r̂i with the subject’s true

response ri on the ith trial. A match between the two results in an increased

probability of the response p(ri|si, M,θ).

7. We repeat steps 4 to 6 with R samples of measurements xi and thus compute

R values of model predicted responses r̂i. We subsequently match each of

them with the corresponding actual response ri of the subject.

8. We obtain an approximation of the probability of response p(ri|si, M,θ) by

averaging over the number of correct matches in R samples.

9. Next, we pick a different value of θ and evaluate the response probability

on the ith trial for a different parameter value by following steps 4 to 8.
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Steps 3 to 9 are repeated for every experimental trial to obtain the likelihood func-

tion of the subject’s actual responses under the model M with parameterθ.

3.3 Maximum-likelihood estimation

Our aim is to find the value of the model parameterθ that maximizes the response

probabilities over all trials. In other words, we are interested in finding the model

parameter at which the predictions of the model provide the best possible expla-

nation for the behavior of subjects in an experiment. This amounts to finding the

maximum-likelihood estimate of θ. Below, we discuss the parameter estimation

method illustrated in [93, 94, 98]. The likelihood function of a parameter value θ

is defined as the probability of the data given the model M with parameterθ:

LM(θ) = p(data|M,θ).

For simplification purposes, it is generally assumed that the noise in the observer’s

responses is independent across trials. Thus, we can write the probability of the

data given the model and its parameters as a product of probabilities over trials:

LM(θ) =
K

∏
i=1

p(ri|si, M,θ). (3.2)

Here K denotes the total number of trials in the experiment. Maximizing the above

parameter likelihood is equivalent to maximizing its logarithm log LM(θ),

log LM(θ) =
K

∑
i=1

log p(ri|si, M,θ). (3.3)

The logarithm prevents possible numerical issues which could arise because of

a very small probability that could mistakenly be treated as zero and could lead
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to potential errors in the computation of the product in Eq. (3.2). We denote the

maximum-likelihood estimate (MLE) of parameter θ by θ̂ and the corresponding

maximum value of the likelihood function as L∗M = max
θ

LM(θ) = LM(θ̂).

In the event that an analytical expression is unavailable for the response prob-

ability p(ri|si, M,θ) under the model M and hence, for the log-likelihood function

in Eq. (3.3), we evaluate the function using numerical methods. Therefore, most of

our data analysis practices rely on obtaining an accurate approximation of the log-

likelihood function. As expected, the accuracy of this evaluation depends on the

size of the data and the number of measurement samples used in the numerical

approximation. Further, we need to find an appropriate numerical algorithm to

find the maximum of the numerically evaluated stochastic log-likelihood function

LM(θ). We use suitable optimization algorithms to find the maximum-likelihood

estimate of the parameterθ that maximizes the log-likelihood function defined in

Eq. (3.3).

In our target detection task (Chapter 2), we do not have any analytical approx-

imation of the log-likelihood function for any model. Therefore, we numerically

evaluate the function for a model M at all hypothesized values of the model pa-

rameterθ. But, the evaluation of our function, log LM(θ) depends on the decision

variable, dST(x) computed in Eq. (2.21), and thus it is a non-linear, non-smooth

stochastic function. To maximize this stochastic function, we tested the following

optimization algorithms and chose the one that was most suitable for our pur-

poses.
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3.4 Optimization techniques

In order to find the maximum of our non-linear stochastic objective function LM(θ),

we tried several different optimization algorithms and compared the obtained re-

sults. We checked the common practice of grid search method and the standard

techniques such as genetic algorithm and pattern search. However, most of our mod-

els (described in Chapter 4) were high-dimensional in parameter space and thus

optimization algorithms required tremendous amount of computational power

and time to produce results. This restricted us to only use grid search method

for our results purposes. In the following section, we briefly describe the three

algorithms we had tested for our data.

3.4.1 Exhaustive or grid search

Exhaustive or brute-force is one of the simplest possible methods of optimizing

an objective function by manually evaluating it on a predefined set of parame-

ter space. The possible parameter space is identified and systematically divided

into possibly a large set of discrete values known as the grid space. The objective

function is then evaluated at all points of the pre-defined grid space and the point

at which the function attains the global maximum is regarded as the maximum-

likelihood estimate of the parameter. The accuracy of this method greatly depends

on the choice of the parameter space and the grid spacing.
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Most of our models (described in Chapter 4) have a high-dimensional param-

eter vector θ. This resulted in a multi-dimensional grid spacing for θ and also a

large number of grid points. Also, the number of evaluations of the log-likelihood

function has an exponential increase with respect to finer discretization of the grid

space. Moreover, our likelihood function is evaluated using Monte Carlo method

(see Eqs. (3.1) and (3.3)) and require a large number of measurement samples to

guarantee convergence. As a consequence, finding maximum-likelihood parame-

ter estimates for our models requires a large amount of computational resources

and time. Furthermore, the precision of the results depends on the convergence

of the log-likelihood evaluation and the discretization of the grid space.

However, we still use grid search method over other optimization algorithms

to obtain our results (in Chapter 4). It is because this method can be run in parallel

for each grid point as the evaluation of the log-likelihood function for our models

is independent between grid points. Therefore, we can numerically evaluate the

function at multiple grid points at the same time and combine the results together.

To be able to run in parallel is the most crucial feature of this exhaustive search that

led us to use this method for our analysis purposes. Also, we obtained consistent

results with this approach. We performed several tests on synthetic data sets to

ensure the accuracy and performance of the algorithm.
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3.4.2 Genetic algorithm and pattern search

The genetic algorithm [103, 143, 52] belongs to a larger class of optimization search

algorithms, known as evolutionary algorithms that work on the principle of nat-

ural selection. An initial population of the parameter θ is (randomly) chosen and

the objective function is evaluated for each individual in the parameter popu-

lation. The value of the objective function usually represents the fitness of the

individual. A fixed number of fittest members of the parameter population are

stochastically chosen to be evolved at the next iteration. The parameter is usually

characterized by specific features or properties, which are then mutated or altered

to obtain a new population or generation of the parameter at the next iteration.

The process is repeated until a desired fitness or maximum value of the objective

function is achieved or predefined maximum number of generations is reached.

The genetic algorithm is suitable for both constrained and unconstrained op-

timization problems. It is specifically used for discontinuous, non-differentiable

stochastic functions to obtain a global extremum; however, it has a slow conver-

gence rate and requires sufficiently large number of iterations to converge.

On the other hand, pattern search [20, 67, 146, 89] converges quickly to the

solution. The search is initiated by evaluating the objective function at an ini-

tial value of the parameter. Then, successively neighboring parameter points are

found for which the value of the objective function increases. The new parameter

points are found using a mesh around the previous ones, and the search contin-

ues until a maximum number of iterations is reached or mesh size is too small.
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Pattern search belongs to the family of direct search algorithms and is applied for

discontinuous or non-differentiable objective functions.

We tested both the genetic algorithm and pattern search to optimize the log-

likelihood function of our models. In the case of simple models having less than 4

parameters, the results were consistent with those obtained using the grid search

method. However, the algorithms did not work for high-dimensional models. The

involved computations makes it difficult for the algorithms to be run in parallel

and in general, they require a huge amount of computational time and resources.

Though these methods are certainly better and more precise than grid search al-

gorithm, we were unable to obtain results using them for our models. Hence,

our analysis is only based on the results obtained using grid search optimization

algorithm.

Thus far, we discussed the procedure to obtain the predictions of a model given

the data. We summarized the estimation method for model parameters and dif-

ferent optimization techniques that can be used for numerical estimation. We now

focus on the visualization of our experimental data. We described the format of

our collected data on the experiment in Section 3.1, but the question is how we

could plot the data for analysis purposes. In the following section, we discuss the

different types of psychometric curves we have used to analyze our data. Psychome-

tric curves are frequently used in psychophysics to study the responses of subjects

on an experiment. The predictions of a model are generated for these curves using

model fitting techniques (discussed in Section 3.2). The error between a subject’s

actual psychometric curve and the model predicted curve provides a measure of
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goodness of a model fit.

3.5 Psychometric curves

Psychometric curves [157, 77] are extensively used in psychophysics to represent

the summary of subjects’ responses on an experiment. They describe the behavior

of subjects over a range of stimulus values. The curve is determined by the num-

ber of alternative choices in the task, for example, a psychophysical task can have

binary choice, two-alternative forced choice (2AFC), or n-alternative choices. We

are mainly interested in the curves having binary choices as our target detection

task has a yes/no paradigm.

For our analysis purposes, we examine the behavior of subjects on our ex-

periment using three different types of psychometric curves. We note that our

experiment was divided into four sessions (details in Section 2.5) and each ses-

sion was characterized by the unique value of correlation coefficient, ρs used to

generate the stimuli. The purpose of our study is to determine whether subjects

learn the structure present in the scenes and infer the correct correlation strength

to make their decisions. Therefore, correlation coefficient, ρs serves as the physi-

cal stimulus parameter of our interest and we specify our results in terms of this

parameter. We consider three types of psychometric curves based on different

characterizations of stimuli as a function of ρs.
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3.5.1 Types of psychometric curves

We consider the following three types of psychometric curves to analyze the re-

sponses of subjects on our target detection experiment described in Chapter 2:

(I) Hit and false-alarm rates: In a target detection task, the probability of re-

porting ”target present” when the target is present is known as the hit rate

or detection rate, or true positive rate, and is denoted by P(T̂ = 1|T = 1).

Whereas, the probability of reporting ”target present” when the target is ab-

sent is known as the false-alarm rate or false-positive rate and is denoted by

P(T̂ = 1|T = 0). The origin of these terminologies lies in the signal detection

theory [56, 97, 158, 73, 101]. Further, we can obtain miss rate or false negative

rate and correct rejection rate or true negative rate by subtracting the hit and

false-alarm rates, respectively from 1.

We plot the hit and false-alarm rates as a function of correlation strength ρs

in four different experimental conditions. We also compare the performance

of subjects as the strength of ρs varies in the experiment.

(II) We also plot the proportion of ”target present” responses as a function of

minimum difference between the target and a distractor’s orientation. We

plot these curves separately for the target-present and target-absent trials.

In a target-absent trial, as the distractor orientation gets closer to the target

orientation, the difference between the two reduces, and it would be difficult

for an observer to discriminate the distractor from the target. The distractor

would appear as a target in such a case and the observer is more likely to
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report ”target present” even though there is no target. On the other hand,

as the minimum difference increases, the distractors will have significantly

different orientations than the target and the observer may be able to detect

the absence of target easily.

While on a target-present trial, a comparatively small orientation difference

between the target and a distractor could provide more evidence to the ob-

server in responding ”target present”. This is because more than one object

in the display would have orientation closer to the target and the observer

could possibly make a decision based on either one of them. In the case of

large minimum difference between the target and a distractor, the observer

must make a decision based on the measurement of the target.

(III) Further, we analyze the behavior of subjects using a plot of proportion of

”target present” responses as a function of sample standard deviation be-

tween distractor orientations. Again, we separate the data on target-present

and target-absent trials. In terms of interpretation, these curves are closely

related to type (II) curves with x-axis as the minimum orientation difference

between target and a distractor. Also, the curve follows a similar shape as

its counterpart in type (II) except in the case of perfect correlations. In the

case of ρs = 1, all distractors are identical and hence the standard deviation

between any pair of distractor orientation is equal. Thus, all data points lie

in a single bin on target absent trials and we only obtain a single point in

the plot. For instance, left panel in Figure 4.1(C) and other similar figures in

Chapter 4 have such curves.
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3.5.2 Predictions using synthetic data

We want to fit the psychometric curves of subjects on the experiment with a hy-

pothesized model M. We use the maximum-likelihood estimate θ̂ of model pa-

rameterθ to generate the predictions of the model for a subject’s data. We assume

that θ̂ represents the subject’s parameter and can be used to completely describe

the behavior of the subject. We use this estimate to generate the stimuli and the

corresponding hypothesized measurements of the subject. These measurements

are then used to make hypothesized responses of the subject based on the decision

variable dM(x) of the underlying model. This constitutes the model predicted data

set for the subject and is also referred as the synthetic or fake data set. The synthetic

data are generated to replicate the subject’s behavior based on the assumptions of

the model M. These data sets are then used to make model generated psychome-

tric curves. The psychometric curves predicted by the model with the parameter

estimate of θ̂ are compared with the actual psychometric curves of the subject

on the experiment. If the model predicted curves are well fitted to the subject’s

true responses, then the model provides a good explanation of the behavior of

the subject on the experiment. If the two curves are significantly different, then

the underlying model lacks the assumptions that could reproduce the subject’s

responses.

It is possible that the responses of the subjects are best described by multiple

models or behavior of different individuals is explained by different models. We

find such issues in Chapters 4 and 5. But, we use summary statistics to draw
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conclusions. We generate the model predictions for each subject and take an av-

erage over all subjects. These average model predictions are then matched with

averaged true psychometric curves of the subjects. The results based on summary

statistics may not reflect a complete picture in the event subjects follow different

strategies or models to make decisions. However, it is difficult to build a mathe-

matical model to test such a possibility.

3.5.3 Error measures

The model provides a prediction for the subject’s data based on the maximum-

likelihood estimate of parameter θ. The subject’s psychometric curves are fitted

using the model predicted curves. To quantify the difference between both curves,

we measure two types of statistical errors: (i) the root-mean-square error (RMSE)

and (ii) the R2 statistic or coefficient of determination. RMSE is defined as the square

root of the mean square error between the subject’s data, yi and the model pre-

dicted curves, ŷi:

RMSE =

√√√√√√
DN

∑
i=1

(yi − ŷi)
2

DN
.

Here DN denotes the total number of data points in the psychometric curve.

Statistic R2 is another measure of determining how well the model fits to the
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experimental data and it is defined as:

R2 = 1−

DN

∑
i=1

(yi − ŷi)
2

DN

∑
i=1

(yi − ȳ)2

,

where ȳ =
1

DN

DN

∑
i=1

yi is the sample mean of subject’s data. The range of R2 de-

pends on the type of regression used; however, a negative value can occur in case

a non-linear function is fitted to the data [32].

3.6 Model comparison

The fitting of model predicted psychometric curves to a subject’s responses deter-

mines the goodness of the model to the experimental data and we measure this

goodness in terms of the statistical error between the two curves. Frequently, we

consider multiple models with different assumptions about the behavior of the

subject. Models generally differ in terms of the assumptions about their param-

eters and the dimensionality of the parameter space. We fit each hypothesized

model to the data using a similar fitting procedure. It is possible that more than

one model provide a good explanation for the subject’s behavior. They could have

equally well predicted curves that match the experimental data and the error is

comparable for both models.

How do we compare models to find the one that best describes the data? Psy-

chometric curves do not help in discriminating two models if both predict similar
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fitting curves for the data. Instead, we compare models on standard criteria that

also weigh models based on their dimensionality. A general model with large

number of parameters will always provide a fit that is at least as good as a special

model obtained from the general case. This could mainly be because of additional

free parameters in the general model. Therefore, we consider criteria that take

this issue into account and penalize a model for the number of free parameters it

has. In the following section, we briefly discuss three criteria that are commonly

used to compare models in psychophysics. We also discuss the limitations we en-

countered while comparing our models (described in Chapter 5) based on these

criteria.

3.6.1 Bayesian model comparison (BMC)

Bayesian model comparison (BMC) [96, 93, 155] is a fundamental method of model

selection. The model with the highest posterior probability (probability of the

model given the data) is selected. The posterior probability of a model M given

the data can be computed using Bayes’ theorem

p(M|data) =
p(data|M)p(M)

p(data)
.

The ratio of posterior probabilities is computed for the two models M1 and M2

that need to be compared

p(M1|data)
p(M2|data)

=
p(data|M1)p(M1)

p(data|M2)p(M2)
.
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An equal prior is chosen for both models, p(M1) = p(M2) = 1
2 since no model

is favored over the other. This reduces the comparison to the ratio of model like-

lihoods, p(data|M). The ratio is also called a Bayes’ factor. The model likelihood is

computed [93, 98] by averaging the model likelihood under a hypothesized value

of the parameter in the parameter space

p(data|M) =

ˆ
p(data|M,θ)p(θ|M)dθ. (3.4)

The above expression is rewritten in terms by taking logarithm

log p(data|M) = log L∗M + log
ˆ

elog LM(θ)−log L∗M p(θ|M)dθ. (3.5)

Bayesian model comparison computed using the above equation is based on the

entire model likelihood function LM(θ), instead of only of its maximum value L∗M.

Further, it penalizes models for additional free parameters. Therefore, BMC is a

principal method to compare models.

However, there are several issues in the practical implementation of BMC.

Eq. (3.5) is based on the integral evaluation of the parameter likelihood function

LM(θ) over the entire parameter space. This integral does not have a closed form

expression in case of analytically intractable model likelihood. Thus in practice,

the integral is approximated by Riemann sums. The accuracy of such an approx-

imation depends on many factors. For instance, the parameter grid spacing and

number of samples used in the evaluation can potentially change the results to a

large extent. Further, the sum may not converge to the true value and could suffer

numerical issues. High-dimensional models are most sensitive to these problems
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and precaution must be taken when using Bayesian model comparison for com-

plex models.

Most of the models that we considered to explain our experimental data are

high-dimensional in parameter space. Thus, we faced computational issues using

BMC to compare our models. In general, the integral in Eq. (3.5) can be evaluated

using Markov Chain Monte Carlo (MCMC) method [50, 121, 96, 107, 19]. However,

we also encountered problems in implementing this method to apply BMC in

our case. Lack of an analytical approximation for the model likelihood function,

LM(θ) created most of the numerical problems for us. Due to computational in-

efficiency of our models, we use criteria that use maximum model likelihoods to

compare models. We describe two such comparison measures below.

3.6.2 Bayesian information criterion (BIC)

Bayesian information criterion (BIC) [131] is a model selection criterion that is based

on the maximum value of model likelihoods L∗M. It computes the goodness of a

model from maximum model likelihood while penalizing the model for extra free

parameters. The penalty term increases with the number of free parameters in the

model. BIC is mainly computed using the following formula

BIC = −2L∗M + f log K, (3.6)

where f is the total number of free parameters in the model and K represents

the total number of experiment trials. The above formula is based on a Laplace’s

approximation of the integral in Eq. (3.5). Bhat et al. [18] have provided a detailed
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derivation of the same.

The penalty term in BIC increases with increasing number of free parameters,

f and it scales with the size of the data. Thus, it more strongly penalizes models

with large number of free parameters as compared to the Akaike information cri-

terion (AIC). Therefore, the model with the lower value of BIC is preferred when

using Bayesian information criterion to compare models. A lower value of BIC

for a model implies fewer free parameters, better fit or both.

3.6.3 Akaike information criterion (AIC)

Similar to BMC and BIC, Akaike information criterion(AIC) [3, 21, 22, 27] is also a

relative measure of a statistical model quality. It is closely related to BIC in terms

of the criterion and the penalty term. However, the penalty term is weaker as

compared to BIC. The following equation is generally used to compute Akaike

information criterion:

AIC = −2L∗M + 2 f . (3.7)

Under this criterion of model selection, the model with the minimum value of AIC

is preferred over others and it also penalizes models for over fitting.

The derivation of the criterion in Eq. (3.7) can be found in [3]. It is mainly based

on the information theoretic concept and computing the Kullback-Leibler (KL) di-

vergence [85, 27, 19] between a model prediction and the data. The model with the

minimum value of KL distance or having minimized information loss is selected.

We note that both BIC and AIC are only based on maximum model likelihoods.
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Thus, this requires finding the maximum-likelihood estimates; however, we do

not need to compute any integrals here. Therefore, to overcome our numerical

difficulties, we compare our models using BIC and AIC in Chapter 5 and make

conclusions based on the results obtained from these comparisons.

3.7 Discussion

In this chapter, we have presented a brief description of the tools that are fre-

quently used in fitting models to the psychophysical experimental data. Estimat-

ing maximum-likelihood parameters of a model is a crucial step in order to fit

the model to a subject’s responses. However, possible numerical problems must

be diagnosed that are specific to the task and the data. A suitable and efficient

optimization algorithm must be applied to estimate model parameters. Lack of a

better approximation of the underlying model likelihood or an inefficient method

of obtaining this approximation can limit the application of an optimization algo-

rithm to the data.

The parameter estimates are then used to generate the model predictions for

the psychometric curves of the subject’s responses. These curves are analyzed

to determine the goodness of the model fit to the data and how well the model

explains the behavioral response of the subject on the experiment. Eventually,

different models are compared on an appropriate selection criterion to find the

model that best describes the data.
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Chapter 4
Data analysis I: model fitting

Recent experimental studies show that humans perform near-optimally in detect-

ing a target among identically and independently oriented distractors [94, 98, 99].

Both homogeneous and heterogeneous distractors are extreme structural condi-

tions and do not represent the possible realistic intermediate structure of natural

scenes. It is unknown that how humans make decisions in response to weakly

structured input in visual search tasks. Therefore, we explore whether humans

can take into account partial stimulus correlations in their inference process.

We conducted a target detection experiment to examine the decisions of hu-

man observers in response to structured input. We interpolated between the ex-

treme conditions of heterogeneous and homogeneous distractors, and introduced

intermediate correlation strengths among distractor orientations. The correlation

coefficient, ρs defined in the generative model in Section 2.1 controls the amount
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of pairwise correlations between distractors. A high value of ρs implies more sim-

ilar distractors and hence more structured visual input.

We consider several plausible models and rigorous model selection tools to

find a model that best explains the data. We interpret the behavior of subjects on

the experiment based on the assumptions of the best fitting model and its param-

eters. We wish to understand whether subjects take into account the strength and

structure of stimulus correlations in their inference process. The correlation coef-

ficient, ρs is an experimental parameter and we varied it to control the amount of

statistical structure in visual scenes. We chose 4 different values of ρs - 0, 1
3 , 2

3 , and

1 to test in the experiment. The condition ρs = 0 corresponds to heterogeneous

distractors and ρs = 1 to perfectly correlated (or homogeneous) distractors. The

intermediate value of ρs ∈ { 1
3 , 2

3} interpolates between the two extreme condi-

tions and introduces a weak structure in the scenes. The experiment was divided

in four different sessions (details in Section 2.5.3) and a unique value of ρs was

used to generate stimuli in each session. Therefore, each session is characterized

by a unique statistical visual structure and represents a different condition on the

experiment. We therefore refer to these sessions as experimental conditions, which

differ by the experimental value of ρs used in that session.

Our goal is to examine the behavior of subjects on different experimental con-

ditions and determine whether subjects use correct or incorrect assumption about

the experimental value of ρs used in different conditions. Therefore, we consider

ρs in our models and fit it per subject using maximum-likelihood estimation. In
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4.1. PSYCHOMETRIC CURVES OF SUBJECTS DATA

addition to estimating ρs as a free parameter in a model, we also need to esti-

mate the precision parameters which determine the subject’s measurements. It is

evident from Eq. (2.21) that precision (inverse of measurement variance, σ2
i ) of a

measurement can greatly affect the accuracy of a subject’s decision. But, we are

unaware of the precision values with which subjects made their measurements.

Therefore, we consider different possible assumptions about encoding precision

of subjects in our models.

We consider a variety of models in this chapter that differ in the assumption

about ρs and encoding precision. We consider a range of assumptions about both

parameters in the models. Each model is individually tested on the experimen-

tal data and model predictions are generated for subjects’ psychometric curves.

We use the methods and procedures described in Chapter 3 for finding param-

eter estimates and fitting a model to the data. We measure the RMSE error and

goodness of fit (R2) between model predicted curves and the data. We conclude

by discussing the need for comparing models.

4.1 Psychometric curves of subjects data

We first examine the experimentally obtained psychometric curves that are based

on subjects’ responses. We consider three types of psychometric curves: (I) hit

and false-alarm rates, (II) proportion of ”target present” responses as a function
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of minimum difference between the target and any distractor, and (III) propor-

tion of ”target present” responses as a function of sample standard deviation be-

tween stimuli orientations. We separately analyze type (II) and (III) curves in

target-present and target-absent trials. A detailed description of these curves is

presented in Section 3.5.1. Figure 4.1 shows the mean responses of subjects on

these different types of psychometric curves.

4.1.1 Hit and false-alarm rates

The left panel in Figure 4.1(A) shows the hit (black) and false-alarm rates (red

curve) for average subject. The mean proportion of subjects responding ”target

present” on target-present and target-absent trials are plotted in each experimen-

tal condition (ρs ∈ {0, 1
3 , 2

3 , 1}). The hit and false-alarm rates show a constant

trend in the first three experimental conditions, while they have an expected in-

crease (hit rate) and decrease (false-alarm rate) in the case of homogeneous dis-

tractors. Increased pairwise correlations between distractor orientations result in

more structure among the stimuli and would make it easier to single out the target,

if present. Therefore, the increase in hit rate (or decrease in false rate) in presence

of homogeneous distractors is due to the increased correlations that facilitate the

target detection.

A similar trend is also seen in the right panel of Figure 4.1(A). The average

subject performance is plotted in each experimental condition. The mean perfor-

mance in first three conditions is very close to 60%, while in the case of ρs = 1,
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Figure 4.1: Psychometric curves based on the experimental data. Throughout the
chapter, the error bars indicate unit standard error mean (s.e.m). (A) Hit and false-
alarm rates (left), and performance (right). (Left) Hit (black) and false-alarm (red)
rates as a function of correlation strength, ρs used in the experimental conditions.
Hit (or false-alarm) rate shows a near-constant behavior in the first three exper-
imental conditions and a large increase (or decrease) for ρs = 1. (Right) Mean
subject performance in the four experimental conditions. (B) Minimum target-
distractor orientation difference. Proportion of ”target present” responses as
a function of minimum difference between the target and any distractor, sepa-
rately for target-present (left) and target-absent (right) trials in the four experi-
mental conditions. Each curve corresponds to an experimental condition with
ρs ∈ {0, 1

3 , 2
3 , 1}. Subjects’ responses have a very similar trend for ρs = 0, 1

3 , and
2
3 , while their behavior is different when ρs = 1. (C) Sample standard deviation
between distractor orientations. Proportion ”target present” responses on differ-
ent experimental conditions as a function of sample standard deviation between
distractor orientations, in target-present (left) and target-absent (right) trials. The
curves are similar to those in (B) except for ρs = 1 in target-absent trials (right).
Since all distractors are identical in a trial when ρs = 1, there is only a single data
point for the sample standard deviation.
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it shows a large increase to 72.7%. This suggests that subjects might be using the

enhanced visual structure to improve their decisions. We will investigate this in

further details below.

4.1.2 Minimum target-distractor orientation difference

A more detailed view of the data can be seen in Figure 4.1(B). The mean pro-

portion of ”target present” responses in all four experimental conditions are plot-

ted as a function of minimum difference between the target and any distractor

in both target-present (left) and target-absent (right) trials. These plots show

that the proportion of subjects responding ”target present” decreases as the mini-

mum target-distractor orientation difference increases, both for target-present and

target-absent trials. Such a behavior is expected, since a large difference between

the target, and any distractor reflects more dissimilarity of the distractors from the

target and hence it would be easier to perform the task. The curves correspond-

ing to ρs = 0, 1
3 , and 2

3 overlap, while the responses of subjects have a different

behavior in the case of ρs = 1. This behavior is consistent with the trend seen

in hit and false-alarm rates in (A). Also, the decrease in the proportion of ”target

present” responses at larger minimum target-distractor differences, is higher in

target-absent trials for ρs = 1 as compared to other experimental conditions. This

is because the distractors are identical when ρs = 1 and as the difference between

target and distractors increases, it would become easier to determine whether all

stimuli are same or there is an odd-ball (target) stimulus.
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4.1.3 Sample standard deviation of distractor orientations

Another view of the data on different experimental conditions is presented in

terms of proportion ”target present” responses as a function of sample standard

deviation of distractor orientations in Figure 4.1(C). Again, these are plotted sep-

arately for target-present (left) and target-absent (right) trials. These curves con-

tain similar information as minimum target-distractor orientation difference plots

in (B). Thus, the behavior on target-present trials is very similar to the left panel

figure in (B). The proportion of ”target present” responses decreases as the sample

standard deviation of distractors increases and hence the distractors get more dis-

similar. On target-absent trials, the sample standard deviation reduces to a single

value in the case of homogeneous distractors and thus the curve has only one data

point.

Figure 4.1 presents different psychometric curves to visualize the experimental

data and each curve provides a different insight about subjects’ behavior. Differ-

ent plots suggest that subjects’ responses are similar in experimental conditions

with ρs < 1, while they do behave differently in the case of homogeneous dis-

tractors. We next describe different plausible models that could explain these ob-

servations and provide a good fit for the experimentally obtained psychometric

curves.
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4.2 Models

In the optimal-observer model derived in Section 2.2, we assume that the observer

is aware of the correct generative model (Figure 2.1) and the associated statistical

variables such as N,σ2
s ,ρs, and prior over T. However, we need to test whether

human observers learn and use the correct generative model in their decisions.

If they do not, their inferences are suboptimal. For instance, an observer may not

use equal odds prior or the correct value of ρs. Therefore, we analyze how sub-

jects made their decisions and what parameter values they used to make their

responses. Specifically, we wish to determine what values of ρs subjects used to

make their responses and how certain they were in making their measurements.

We note that we can only determine this by fitting models to the data and making

conclusions based on the best fitting model. However, it is always possible that

there are better models and better explanations.

The subjects were pre-informed about the number of stimuli being N = 4 in

the experiment. Further, we assume that subjects were able to infer the correct

value of σs as 15◦ in the experiment and used it to make their decisions. Though,

this may not necessarily be true. It is possible that subjects did not infer the value

of σs correctly in the experiment and might have used an incorrect assumption

about it. In that case, we would need models that incorporate the plausible as-

sumptions about σs that observers could have used. Such models will have σs

as a free parameter and we would need to test possible assumptions on it. For

instance, subjects could use different values of σs across experimental sessions or
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possibly they could use a distribution over the values ofσs. We can easily see that

this would add another dimensions of complexity to our existing complex models

and would further make our computations intractable. Thus, we save some order

of complexity in our models by assuming that subjects were able to correctly infer

the true value of σs in the experiment.

We are mainly interested in determining whether subjects use correct or in-

correct assumption about ρs in making decisions on different experimental condi-

tions. We denote the true experimental value of ρs by ρstrue and a subject’s assumed

value of ρs by ρsassumed . Therefore, we want to determine whether ρsassumed = ρstrue

or ρsassumed 6= ρstrue for a subject in each experimental condition. If the subject uses

ρsassumed = ρstrue in all experimental conditions, the subject is optimal on the task.

Otherwise, we refer to the condition ρsassumed 6= ρstrue as suboptimal condition.

To answer this question, we consider several models. We categorize these

models based on the assumptions about ρs and the encoding precision:

1. Assumption about ρs: we explored whether subjects use the correct (ρsassumed =

ρstrue) or incorrect (ρsassumed 6= ρstrue) assumption about ρs in the generative

model.

2. Encoding precision: we do not know how subjects made their measure-

ments. In particular, what precision values they used for encoding stimuli.

We need to determine whether subjects encode all stimuli with equal pre-

cision or they use varying precision for stimuli across trials. Therefore, we

test models which assume that subjects either encode stimuli with equal or
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variable precision.

In the following sections, we discuss the above two categories of models in details

and also their further division into sub-categories.

4.2.1 Assumptions about ρs

An ideal observer uses the correct value of ρs when inferring target presence.

However, it is possible that an observer may not be aware of the correct corre-

lation strength. To test which case is more likely, we consider models with ρs as a

free parameter. Specifically, we tested three main assumptions about ρs:

(a) ρsassumed = ρstrue : we assume that the observer uses the correct value of corre-

lation strength in all experimental conditions to infer target presence, that is,

ρsassumed = ρstrue ∈ {0, 1
3 , 2

3 , 1}.

(b) ρsassumed = ρsconstant : in this condition, we consider that the observer assumes

that the correlation strength among distractor orientations is constant across

all conditions. In particular, we check whether

(i) the observer completely ignores the information about structural corre-

lations in all experimental conditions and uses ρsconstant = 0. This would

mean that observer uses (0, 0, 0, 0) as correlation values in making deci-

sion on all experimental conditions.

(ii) the observer may also use any other value between 0 and 1 as ρsconstant in

making decision. We thus let ρsassumed = ρsconstant to be a free parameter in
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the model.

(c) ρsassumed 6= ρstrue : we further allow the possibility that the observer may use

different, possibly incorrect correlation strengths across experimental condi-

tions. We let ρsassumed to be a free parameter in the model and check for the

following possibilities:

(i) the observer considers the first three conditions identically and thus uses

an equal correlation strength in making decision on these conditions,

while assume a different correlation strength in the fourth experimen-

tal condition. In such a case, we fit ρsassumed as a constant free parameter

in the first three conditions and as another free parameter in the fourth

experimental condition, i.e., (α,α,α,β).

(ii) the observer uses an incorrect assumption about ρs in all experimental

conditions. We thus fit ρsassumed per condition in this model, i.e., ρsassumed

has following form (α,β,γ, δ). We note that this is the most general as-

sumption about ρs and all above models are special cases of this model.

Hereα,β,γ, and δ represent free parameters of the model and these are fitted per

model for each subject. We also note that ρsassumed = ρsconstant and ρsassumed 6= ρstrue

are suboptimal behavioral conditions.
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4.2.2 Encoding precision assumptions

Along with the assumption about ρs, we also consider different assumptions about

encoding precision in our models. Since the precision of measurements greatly

impacts the accuracy of decisions, we wish to determine which assumption is

most consistent with the responses of the subjects. Signal detection models have

typically assumed that encoding precision is constant across stimuli and trials at a

given set size [110, 135, 164, 159]. However, recent experimental studies show that

observers’ measurements are of variable precision. That is, the encoding precision

varies across stimuli and trials [150, 46, 98, 99, 75, 76, 137, 139]. This variability

could be attributed to the attentional fluctuations or other factors.

We thus consider both possible models of the precision of measurements. In

the first type of models, we assume that the observer assigns equal precision to

all stimulus measurements. We denote the precision of the ith measurement by

Ji = 1
σ2

i
. Under the equal precision assumption, we assume that Ji is constant

across stimuli, that is, Ji = J for all i = 1, 2, · · · , N. The constant J is a free

parameter in the model. These models are known as equal precision (EP) models.

We assume that the precision is constant across trials in the same experimental

condition; however, it may vary across different experimental conditions. We thus

test both possibilities in our models by assuming J as constant and variable across

experimental conditions. We, therefore, consider two types of EP models with J

as a single constant parameter in all conditions and as a varying parameter across

the four experimental conditions.
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In the second type of precision models, we assume encoding precision varies

randomly across stimuli and trials. These models are known as variable precision

(VP) models. We denote the precision variable by a vector J = (J1, J2, · · · , JN),

where Ji corresponds to the precision of the ith measurement. In the VP mod-

els, we assume that the precision variable J with which stimuli are encoded is a

random variable. To model such variability, we assume J follows a gamma distri-

bution with mean J̄ and a scale parameter τ . We sample the precision randomly

for each stimulus on each trial. Therefore, the measurement is described by a dou-

bly stochastic process, ( J̄, τ) → J → x [150]. Thus, the precision determines the

distribution of stimulus estimate, but is itself also a random variable.

Why do we choose the gamma distribution to model the variability in preci-

sion? The proper choice of a distribution for modeling variable precision would

require the marginalization over all possible ways to implement this variability.

Though a full marginalization seems impossible, but the success of the VP concept

can be assessed how well it performs under various specific alternative distribu-

tions. Van den Berg et al. [149] have implemented and tested VP models with

many other alternatives such as log-normal, Weibull, and log-uniform distribu-

tions. They have found that the results are consistent under changes in the as-

sumed distribution over precision. Therefore, we consider that our results would

be robust under the choice of a distribution. The gamma distribution is a two-

parameter family of continuous, unimodal distributions on the positive real line

and has been successfully used for modeling variable precision. We thus consider

the same choice for our models.
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In our VP models, both J̄ and τ are free parameters. We assumed the scale τ to

be constant across experimental conditions. Similar to EP models, we allow J̄ to

be constant or varying across experimental conditions in the models.

4.2.3 Summary of models

We test the following two assumptions about encoding precision in EP (with pre-

cision parameter J) and VP (mean precision parameter J̄) models:

• precision J (or J̄ in VP) is independent of the experimental conditions (ρs-

independent),

• precision J (or J̄ in VP) vary across experimental conditions and is thus ρs-

dependent.

In addition, we have following model variants based on the assumption about ρs

for each category of EP and VP models:

(i) ρsassumed = ρstrue = (0, 1
3 , 2

3 , 1), the optimal model,

(ii) ρsassumed = (0, 0, 0, 0), i.e., no correlations model,

(iii) ρsassumed = (α,α,α,α), constant correlations model,

(iv) ρsassumed = (α,α,α,β), constant in first three conditions and different in ρs =

1 condition, and

(v) ρsassumed = (α,β,γ, δ), the most flexible model in terms of ρs.
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We test each of the above assumption about ρs for each possible combination of

EP, and VP models. Therefore, in total, we consider 2 × 2 × 5 = 20 models. In

addition to the assumptions about ρs and encoding precision, we also consider

prior for T as a free parameter in our models. We assume this parameter to be

constant across experimental conditions.

Table 4.1 gives a detailed summary of the models and their number of param-

eters. For reference convenience, we number models in each precision category,

from EP1 to EP10 and VP1 to VP10. We note that most of the models are high-

dimensional (with parameters > 3) and these parameters are associated with dif-

ferent correlation (experimental) conditions.
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Precision Assumption
about J or J̄

Model
No.

Assumption about
ρs

No. of
free pa-
rameters

EP1 ρsassumed = (0, 1
3 , 2

3 , 1) 2
EP2 ρsassumed = (0, 0, 0, 0) 2

EP J condition-
independent

EP3 ρsassumed = (α,α,α,α) 3

EP4 ρsassumed = (α,α,α,β) 4
EP5 ρsassumed = (α,β,γ, δ) 6
EP6 ρsassumed = (0, 1

3 , 2
3 , 1) 5

EP7 ρsassumed = (0, 0, 0, 0) 5
EP J condition-

dependent
EP8 ρsassumed = (α,α,α,α) 6

EP9 ρsassumed = (α,α,α,β) 7
EP10 ρsassumed = (α,β,γ, δ) 9
VP1 ρsassumed = (0, 1

3 , 2
3 , 1) 3

VP2 ρsassumed = (0, 0, 0, 0) 3
VP J̄ condition-

independent
VP3 ρsassumed = (α,α,α,α) 4

VP4 ρsassumed = (α,α,α,β) 5
VP5 ρsassumed = (α,β,γ, δ) 7
VP6 ρsassumed = (0, 1

3 , 2
3 , 1) 6

VP7 ρsassumed = (0, 0, 0, 0) 6
VP J̄ condition-

dependent
VP8 ρsassumed = (α,α,α,α) 7

VP9 ρsassumed = (α,α,α,β) 8
VP10 ρsassumed = (α,β,γ, δ) 10

Table 4.1: List of models fitted to the experimental data on the target detection
task. Description of models fitted to the experimental data with different assump-
tions about encoding precision parameter and correlation coefficient. The number
of free parameters per model is also listed.
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Besides these models, there could be many other possible assumptions about

ρs such as ρsassumed = (1, 1, 1, 1), ρsassumed = (0, 0, 0, 1), ρsassumed = (0, 0, 0,α), and

ρsassumed = (α,α,α, 1). We also test these possibilities in our models; however, the

model fits in these cases are either worse or comparable to other general models

we have considered above. Thus, we do not include these models in our analysis

below.

We now present the model fits to the experimental data for each of the model

listed in Table 4.1. Each model fit is obtained by generating synthetic data based

on the maximum-likelihood estimates of the model parameters for each subject

using the same number of trials as in the subject’s data (averaged over 100 runs).

The model predictions for different psychometric curves are obtained based on

these synthetic data.

4.3 Equal precision models

We first examine the fits of the EP models to the subjects’ data. We present the

predictions of all EP models for the psychometric curves and discuss the conse-

quences.

4.3.1 Condition-independent precision J

We consider precision to be constant across experimental conditions and test dif-

ferent assumptions about ρs. We check the model fits of EP1 to EP5 here. These
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models have a common assumption about precision, but they differ in the as-

sumption about ρsassumed and hence have varying number of free parameters. In

addition, they have a common assumption about the prior of T. In the figures that

follow, the shaded areas represent the fits of the model to the data. The model

predictions for each subject are individually obtained and averaged over subjects.

Figure 4.2 shows the fits of EP1 model for the data. This model assumes that

subjects use correct assumption about the correlation strength, ρs in their infer-

ence process. The fits for the hit rate, false-alarm rate, and performance illus-

trate a good match (RMS errors of 0.036 and 0.011, and R2 values are 0.94 and

0.96, respectively) between the model predictions and the data. Also, the model

predictions have a close agreement to the data for the psychometric curves in

Figure 4.2(B) with small errors (RMSE errors are 0.05, 0.05, 0.06, and 0.06 in the

four experimental conditions, while R2 values equal to 0.94, 0.92, 0.89, and 0.91,

respectively). However, when we analyze the model fits based on sample stan-

dard deviation plots, the model predictions fail badly and show large deviations

(Figure 4.2(C)). Specifically, the predictions are worse in the cases of ρs = 0 and

ρs = 1
3 (RMSE equal to 0.095 and 0.075; R2 equal to 0.3 and 0.46, respectively).

These curves clearly suggest that subjects do not use this model assumptions in

their inference process.

We see a far more worse trend (RMS errors of more than 0.6 and R2 values

are even negative for some curves) in the fits of EP2 model in Figure 4.3. None

of the subjects’ curves are predicted by the assumption of zero correlations in this

model. The model predictions are worse in the case of homogeneous distractors,
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Figure 4.2: EP model 1 (J condition-independent and ρsassumed = ρstrue) fits for
the data. Throughout the chapter, the shaded areas show the fit of the model
and the circles are averaged subject responses. The error bars and shaded areas
represent unit standard error of the mean for subjects’ data and model fits, re-
spectively. RMS errors and goodness of fit, R2 values between the data and model
predictions are indicated by blue and green numbers in the plots, respectively.
(A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a function of
correlation strength, ρs used in the experimental conditions. (Right) Performance
as a function of correlation strength, ρs. (B) Minimum target-distractor orien-
tation difference. Proportion ”target present” responses as a function of mini-
mum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.3: EP model 2 (J condition-independent and ρsassumed = (0, 0, 0, 0))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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ρs = 1 (Figure 4.3(C)) with the RMS errors of 0.2 and R2 having a large negative

value. The worse fits of this model in all conditions clearly indicate that subjects

might be using correlations in making their decisions. However, we still need to

investigate what correlation values they use in such a case.

Next, we compare the fits of EP3 model in Figure 4.4 that has the assumption

of constant ρsassumed across experimental conditions. The model has better predic-

tions for the data in the first three experimental conditions (RMSE < 0.07 and

R2 > 0.64, respectively) as compared to the condition of ρs = 1. Though the

fits are not perfect even when ρs = 1
3 and ρs = 2

3 . Particularly, the predictions

in Figure 4.4(C) show disagreement between model fits and the data points at

large values of sample standard deviation between distractor orientations. The

model completely fails to explain the behavior of subjects on the homogeneous

distractors condition having RMS errors of 0.1 and R2 of 0.64 in the minimum

target-distractor orientation plots (Figure 4.4(B)), and RMS errors of 0.15 and R2

of -0.21 in the case of sample standard deviation plots (Figure 4.4(C)). These model

fittings with the constant assumption of ρs suggest that perhaps subjects treat the

case of ρs = 1 differently from the other experimental conditions and they might

be using different inference processes in the case of perfectly structured inputs.

This seems to be consistent with the responses of subjects observed in Figure 4.1.

However, since this model could not completely explain the behavior even in the

cases of ρs < 1, it is difficult to support this hypothesis using the predictions of

the EP3 model.
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Figure 4.4: EP model 3 (J condition-independent and ρsassumed = (α,α,α,α))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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Figure 4.5: EP model 4 (J condition-independent and ρsassumed = (α,α,α,β))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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To test our hypothesis about whether subjects treat the homogeneous condi-

tion differently from other experimental conditions, we check the predictions of

the EP4 model in Figure 4.5. EP4 model allows the possibility of having ρsassumed

as a free parameter in the first three conditions and a different value in the fourth

condition along with the assumption of constant precision parameter J. That is,

ρsassumed has the form of (α,α,α,β), which implies that the observer uses a constant

value of ρsassumed in the first three experimental conditions, but treats the fourth

condition differently (when β 6= α for the observer). If, for an observer, β is equal

to α, the fits of the EP4 model reduce to those of EP3 (with ρsassumed = (α,α,α,α))

for that observer’s data.

The EP4 model has better predictions for the subjects’ behavior on conditions

with ρs < 1. Specifically, the hit and false-alarm rates (left), and performance

curve (right) are closely fitted in Figure 4.5(A), with RMS errors of 0.031 and 0.023

(R2 of 0.95 and 0.83), respectively. Further, the shaded curves of model are well

aligned (RMS errors of 0.04 and R2 ≥ 0.94) with the data points in the minimum

target-distractor orientation plots in Figure 4.5(B) except in the case of ρs = 1,

where it shows some deviations in the target-present trials (fourth column). But,

the comparison based on the sample standard deviation figures (Figure 4.5(C))

indicate that this model also fails to capture the responses of subjects on the perfect

correlation condition. The model does have better fits for the data as compared

to EP3 model in Figure 4.4(C, fourth column); however, they still have large RMS

errors of 0.076 and low R2 value of 0.63. In addition, the model predictions fail at

some data points in the first three experimental conditions in Figure 4.5(C).
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Figure 4.6: EP model 5 (J condition-independent and ρsassumed = (α,β,γ, δ))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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Therefore, the models EP1 to EP4 still lack the assumptions to explain the be-

havior of subjects on the target detection task. In order to further explore how

subjects made their decisions, we test the most flexible assumption about ρsassumed

with constant precision J across experimental conditions in EP models. We let

ρsassumed be a free parameter and fit it per condition having the form of (α,β,γ, δ).

This assumption is included in our EP5 model and it represents a general model

for the assumption on ρsassumed . The model fitting curves are shown in Figure 4.6.

Analyzing the model fits for each psychometric curve, we find that the predictions

of this model are very close to those of EP4 model in Figure 4.5. Further, the mag-

nitudes of RMS errors and the goodness of fit, R2 are similar in both cases. This

suggests that both models are close in their predictions for the data; however,

none of them provide a good explanation for the data in the perfect correlation

experimental condition.

Since none of the models EP1 to EP5 could provide a good fit for the exper-

imental data, it is difficult to conclude anything about the behavior of subjects

based on these models. However, these models were based on different assump-

tions about ρsassumed , including the most general one but having the common hy-

pothesis about constant J across experimental conditions. The mis-fit of all these

models to the data suggests that in addition to ρsassumed , the assumption of preci-

sion J is also important and that plays a crucial role in determining the predictions

of the model for the data. Thus, we consider other models to test the assumption

whether subjects have varying precision J across experimental conditions. To be

consistent, we test similar assumptions about ρsassumed as in models EP1 to EP5 in
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the following section.

4.3.2 Condition-dependent precision J

We now consider models EP6 to EP10, which have a common assumption about

the precision J constant in a particular experimental condition, but varying across

conditions. We begin with testing the hypothesis of ρsassumed = ρstrue = (0, 1
3 , 2

3 , 1)

in EP model 6.

We find in Figure 4.7(A) and (B) that the model has relatively good fit (R2 ≥

0.89 ) for the data, as compared to models EP1 to EP5, that assume J to be con-

stant across experimental conditions. But, the model predictions are worse for all

conditions in the sample standard deviation plots (Figure 4.7(C)). The RMS errors

range from a minimum of 0.059 (ρs = 1
3 ) to 0.082 (ρs = 0), while R2 values are

of the orders of 0.51(when ρs = 0) to 0.57 (ρs = 1). Therefore, sample standard

deviation plots provide us additional information about the model fits in addition

to the minimum target-distractor orientation plots which were used for analysis

in studies done by Mazyar et al. [98, 99]. Based on the poor performance of this

model in Figure 4.7(C), we reject this model and test other assumptions about the

ρsassumed for subjects’ responses.

We next consider the fits of EP7 model in Figure 4.8. This model assumes that

observers do not learn any structural correlations present in visual scenes and

consider all conditions as heterogeneous displays (ρsassumed = (0, 0, 0, 0)). Consid-

ering only the curves in Figure 4.8(A), the model seems to be predicting well for
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Figure 4.7: EP model 6 (J condition-dependent and ρsassumed = ρstrue) fits for the
data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a function
of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.8: EP model 7 (J condition-dependent and ρsassumed = (0, 0, 0, 0)) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a func-
tion of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).

114



4.3. EQUAL PRECISION MODELS

the data with small RMS errors of 0.035 (left panel) and 0.025 (right panel). How-

ever, when we consider the fits for the minimum target-distractor orientations in

Figure 4.8(B) and the sample standard deviation plots in Figure 4.8(C), we see

huge errors (RMSE of the order of 0.06 or more) between the model predictions

and the data. This clearly indicates that this model do not explain the responses of

the subjects in the experiment. Perhaps subjects do take correlations into account

while making their decisions. But, we are unaware of the values of the structural

correlations they use.

Thus, we test the assumption of constant correlations in the experiment in EP

model 8. The model predictions and fits are shown in Figure 4.9. Analyzing the

curves in (B) and (C), we find that the model does not reproduce the subjects’ be-

havior on the experiment. It particularly fails in the condition of ρs = 1 with RMS

error of more than 0.1 and relatively poor R2 value. We also find that the fitting of

psychometric curve in the experimental condition of ρs =
1
3 in Figure 4.9 (B, sec-

ond column) is worse as compared to EP7 model in Figure 4.8(B, second panel).

This seems odd, since EP7 model is a special case of EP8 model with α = 0 in

all conditions. This might be explained using the computational inefficiency we

faced in obtaining the fits of our models. We obtained the maximum-likelihood

model parameters using the exhaustive grid search method (Section 3.4.1) and

such an estimation depends on the convergence of the likelihood function. If

the likelihood function does not converge, the estimates may not represent the

global maximum-likelihood parameter estimates. But, overall the model has good

115



4.3. EQUAL PRECISION MODELS

Sample standard deviation between distractor orientations (°) 

(C) ρs = 0   ρs = 1/3   ρs = 2/3   ρs = 1   

0 0.2 0.4 0.6 0.8 1 

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 
0.037 
0.92 0.053 

0.79 0.046 
0.65 0.13 

0.13 

Minimum target-distractor orientation difference (°) 

(B) ρs = 0   ρs = 1/3   ρs = 2/3   ρs = 1   

0 0.2 0.4 0.6 0.8 1 

0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 
0.07 
0.88 0.08 

0.82 0.04 
0.96 0.10 

0.69 

Correlation coefficient, ρs  

Target absent, model Target present, model 
Target absent, data Target present, data 

(A) Hit and false-alarm rates Performance 

0 
0.2 
0.4 
0.6 
0.8 

1 

0.4 
0.6 
0.8 

1 

0 1/3 2/3 1 0 1/3 2/3 1 
0.048 
0.89 0.037 

0.55 

Pr
op

or
tio

n 
of

  
co

rr
ec

t r
es

po
ns

es
 

Pr
op

or
tio

n 
"t

ar
ge

t p
re

se
nt

" 
re

sp
on

se
s 

Figure 4.9: EP model 8 (J condition-dependent and ρsassumed = (α,α,α,α)) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a func-
tion of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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predictions as compared to EP7 model, particularly comparing the fits in Fig-

ure 4.9(C) to the ones in Figure 4.8(C).

We continue our analysis with EP9 model having condition-dependent preci-

sion parameter J. The model provides a better picture of the data as seen in Fig-

ure 4.10. We find better fits for the psychometric curves in (A) and (B). However,

we continue to find model deviations for the sample standard deviation plots in

Figure 4.10(C). In particular, the model fails to account for the data in the homo-

geneous condition. Though compared to other EP models (EP1 to EP8) discussed

so far, the RMS error is found to be small in this case at 0.058 (comparable in case

of EP1) and the model makes good predictions for the data but it still does not

completely explain the subjects’ behavior based on the sample standard deviation

plots.

Finally, we test our last EP model listed in Table 4.1, which is EP10 model. The

EP model has the most flexible assumption about ρsassumed and precision J. We

compare the fits of this model in Figure 4.11. Like many other EP models, the

model does extremely well in the first three conditions, but fails to explain the

behavior on the homogeneous condition. Specifically, the poor model fit is contin-

uously seen in the sample standard deviation plot for ρs = 1 (Figure 4.11(C) here).

The hit and false-alarm rates (Figure 4.11(A)) along with the psychometric curves

of minimum target-distractor orientations (Figure 4.11(B)) are well predicted by

the model assumptions and have R2 values of more than 0.9. Further, the model

fits to the data are acceptable in the first three experimental conditions in Fig-

ure 4.11(C) with small RMS errors of up to 0.044. But, a worse model fit (RMSE
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Figure 4.10: EP model 9 (J condition-dependent and ρsassumed = (α,α,α,β))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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Sample standard deviation between distractor orientations (°) 

(C) ρs = 0   ρs = 1/3   ρs = 2/3   ρs = 1   

0 0.2 0.4 0.6 0.8 1 

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 
0.039 
0.89 0.036 

0.86 0.044 
0.71 0.064 

0.64 

Minimum target-distractor orientation difference (°) 

(B) 

  

ρs = 0   ρs = 1/3   ρs = 2/3   ρs = 1   

0 0.2 0.4 0.6 0.8 1 

0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 
0.03 
0.97 0.04 

0.96 0.04 
0.95 0.07 

0.90 

Correlation coefficient, ρs  

Target absent, model Target present, model 
Target absent, data Target present, data 

(A) 

Pr
op

or
tio

n 
of

  
co

rr
ec

t r
es

po
ns

es
 

Hit and false-alarm rates Performance 

0 
0.2 
0.4 
0.6 
0.8 

1 

0.4 
0.6 
0.8 

1 

0 1/3 2/3 1 0 1/3 2/3 1 
0.018 
0.98 0.011 

0.96 

Pr
op

or
tio

n 
"t

ar
ge

t p
re

se
nt

" 
re

sp
on

se
s 

Figure 4.11: EP model 10 (J condition-dependent and ρsassumed = (α,β,γ, δ))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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equal to 0.064) in the condition of ρs = 1 allows us to reject this model and explore

variable precision models.

The motivation to test VP models is to find a model that could possibly explain

the subjects’ behavior equally well across all experimental conditions and in terms

of all psychometric curves. We thus now analyze the fits of VP models for the

experimental data.

4.4 Variable precision models

Since equal precision models failed to explain the behavior of subjects’ on the

experiment, we further investigate if models with variable precision can provide

an insight into how subjects inferred their responses. Variable precision models

have been successfully used to explain human decisions on visual search task [98,

99] with homogeneous and heterogeneous distractors. We thus test if varying

precision can be a key factor in interpreting the decisions of subjects in the target

detection experiment here. Similar to EP models, we consider both possibilities of

the mean precision J̄ of the gamma distribution to be constant or varying across

experimental conditions. We discuss the fits for both categories of models below.

4.4.1 Condition-independent mean precision J̄

We first examine the variable precision models with mean J̄ assumed to be con-

stant across experimental conditions. We also assume the scale parameter τ of the
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gamma distribution to be constant across experimental conditions and is another

free parameter for the precision in the model. We check for the five possibilities

for the ρsassumed in VP1 to VP5 models (described in Table 4.1) and analyze the

resulting fits to find the best model if there is any.

Figure 4.12 shows the fitting of VP1 model to the data. We see the model

explains the subjects’ responses in the first three experimental conditions except

for minor deviations in the target-present trials when ρs = 1
3 in Figure 4.12(B).

However, like many EP models, the model fails to account for the behavior in

the perfect correlation condition. Specifically, the model predicts a lower propor-

tion of ”target-present” responses as compared to the subjects’ data in the sample

standard deviation plot in Figure 4.12(C, fourth panel). The RMS error is equal

to 0.077, while the goodness of fit, R2 is measured at 0.56 in this case. Therefore,

with this variable precision model having correct assumption about the genera-

tive model, the data could not be explained well in the homogeneous condition.

We further check the predictions of VP2 model for the data in Figure 4.13.

Very similar to VP1 model in Figure 4.12, the predictions of VP2 model com-

pletely fail to interpret the behavior in the experimental condition with ρs = 1.

Moreover, the predictions are worse in this case as compared to VP1 model, as

the RMS error increases to 0.15 (in Figure 4.13(C, fourth panel)) as compared to

0.077 in VP1 model (Figure 4.12(C, fourth panel)) and 0.1 (Figure 4.13(B, fourth

panel)) from 0.08 (Figure 4.12(B, fourth panel)) in the minimum target-distractor

orientation plots. However, except for the condition of ρs = 1, the data points

are well matched with the model predictions. For instance, the goodness of fit
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Figure 4.12: VP model 1 ( J̄ condition-independent and ρsassumed = ρstrue) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a func-
tion of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.13: VP model 2 ( J̄ condition-independent and ρsassumed = (0, 0, 0, 0))
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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varies from 0.93 to 0.98 in the case of minimum target-distractor orientation plots

in Figure 4.13(B, first, second, and third panels) and 0.9 to 0.97 in sample standard

deviation plots in Figure 4.13(C, first, second, and third panels). This suggests

that there is something really particular about the homogeneous condition that

the above discussed models are missing and subjects do treat the condition with

higher statistical structure differently as compared to the partial correlation con-

ditions.

Further, we analyze the fits of models VP3, VP4, and VP5 in Figures 4.14, 4.15,

and 4.16, respectively. We find that all these models have a similar trend in the

first three conditions and completely fail to predict the behavior on the homoge-

neous condition (ρs = 1). Though these models differ in their assumptions about

ρsassumed , the predictions are quite similar in terms of model generated psychome-

tric curves. Model VP5 has the most flexible assumption about ρsassumed in this

category of models and we notice that this model also shows large RMS errors of

0.091 in Figure 4.16(C, fourth panel) and a poor fit of R2 equal to 0.43.

Thus, none of the VP models in this category could provide suitable explana-

tion for subjects’ responses. All models VP1 to VP5 show good agreement with the

data in the first three experimental conditions (with small RMS errors), while fail

to incorporate the decision strategies of subjects when the distractors are perfectly

correlated. The assumption of variable precision with constant J̄ across condi-

tions did not improve the predictions of the models. This suggests that perhaps

subjects’ precision not only vary across stimuli and trials, but may also be vary-

ing across experimental conditions. Or, in the worst case, subjects might be using
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Figure 4.14: VP model 3 ( J̄ condition-independent and ρsassumed = (α,α,α,α)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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Figure 4.15: VP model 4 ( J̄ condition-independent and ρsassumed = (α,α,α,β)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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Figure 4.16: VP model 5 ( J̄ condition-independent and ρsassumed = (α,β,γ, δ)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).
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some other assumptions about the generative model that our discussed models

(EP1 to EP10, and VP1 to VP5) fail to incorporate.

Therefore, we finally test whether adding the assumption about varying J̄

across conditions in variable precision models could provide a better explanation

for the subjects’ behavior on the experiment, specifically in the case of homoge-

neous condition.

4.4.2 Condition-dependent mean precision J̄

In this section, we analyze the predictions of variable precision models that as-

sume mean precision parameter J̄ to be variable across experimental conditions

and hence we fit J̄ per condition as a free parameter in the model for each subject.

Models VP6 to VP10 described in Table 4.1 include this assumption about J̄.

We examine the fits of VP6 model in Figure 4.17. We find that model predic-

tions in this case are in close agreement to the data in all the conditions and for

all types of psychometric curves. The goodness of fit measured in terms of R2

is above 0.9 for all curves, except for the minimum target-distractor plot in Fig-

ure 4.17(B, fourth panel) where it is 0.88, as the model misses few data points. But

overall, we see a well match between the model predictions and our data.

Thus, the question arises: do the subjects follow this model in their inference

process? We note that VP6 model assumes that ρsassumed = ρstrue with varying J̄

across experimental conditions. The good fits of this model indicate that subjects

were able to infer the correct information about the generative model and use it
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Sample standard deviation between distractor orientations (°) 

(C) ρs = 0   ρs = 1/3   ρs = 2/3   ρs = 1   

0 0.2 0.4 0.6 0.8 1 

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 
0.025 
0.92 0.026 

0.93 0.017 
0.92 0.033 

0.97 

Minimum target-distractor orientation difference (°) 

(B) ρs = 0   ρs = 1/3   ρs = 2/3   ρs = 1   

0 0.2 0.4 0.6 0.8 1 

0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 
0.02 
0.99 0.03 

0.97 0.02 
0.99 0.08 

0.88 

Correlation coefficient, ρs  

Target absent, model Target present, model 
Target absent, data Target present, data 

(A) 

Pr
op

or
tio

n 
of

  
co

rr
ec

t r
es

po
ns

es
 Hit and false-alarm rates Performance 

0 
0.2 
0.4 
0.6 
0.8 

1 

0.4 
0.6 
0.8 

1 

0 1/3 2/3 1 0 1/3 2/3 1 
0.017 
0.99 0.004 

0.99 

Pr
op

or
tio

n 
"t

ar
ge

t p
re

se
nt

" 
re

sp
on

se
s 

Figure 4.17: VP model 6 ( J̄ condition-dependent and ρsassumed = ρstrue) fits for the
data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a function
of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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to make their responses. But, we must investigate other models with alternative

assumptions about ρsassumed before making a conclusion here. We need to examine

how other models perform under the assumption of varying J̄ between experi-

mental conditions.

To this end, we study the fitting of models VP7, VP8, VP9, and VP10 in Fig-

ures 4.18, 4.19, 4.20, and 4.21, respectively. We find that except for model VP7,

all other models are equally good in their fits to the data. Model VP7 assumes

that observers do not use any structural information in their decisions and Fig-

ure 4.18(C, fourth panel) shows poor fits of the predictions of this model for the

data having RMS error of 0.11. Based on this model, we can assert that subjects do

use stimulus correlations in making their responses and specifically the behavior

of subjects, is remarkably different in the homogeneous condition as compared to

the partial correlation conditions.

This hypothesis is well tested with model VP9 that assumes such a structural

form of ρsassumed = (α,α,α,β). Figure 4.20 illustrates a good match between the

model-generated curves and the psychometric curves based on subjects’ data. The

goodness of fit R2 ranges from 0.91 to 1 for different curves and establishes that the

model is successful in reproducing the responses of subjects on the experiment.

Further, the most general model VP10 perform equally well as models VP6,

VP8, and VP9 in generating the predictions for the subjects’ data. However, this

model has more numbers of free parameters, as we allow the possibility of ρsassumed

fitted per condition. The magnitude of RMS errors for this model is comparable

with other models in this category (except model VP7). This indicates that this is
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Figure 4.18: VP model 7 ( J̄ condition-dependent and ρsassumed = (0, 0, 0, 0)) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a func-
tion of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.19: VP model 8 ( J̄ condition-dependent and ρsassumed = (α,α,α,α) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a func-
tion of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.20: VP model 9 ( J̄ condition-dependent and ρsassumed = (α,α,α,β) fits for
the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm rates as a func-
tion of correlation strength, ρs used in the experimental conditions. (Right) Perfor-
mance as a function of correlation strength, ρs. (B) Minimum target-distractor ori-
entation difference. Proportion ”target present” responses as a function of min-
imum target-distractor orientation difference, separately for target-present (gray)
and target-absent (red) trials in each experimental condition (columns). (C) Sam-
ple standard deviation of distractor orientations. Proportion ”target present”
responses as a function of sample standard deviation of distractor orientations,
separately for target-present (gray) and target-absent (red) trials in each experi-
mental condition (columns).
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Figure 4.21: VP model 10 ( J̄ condition-dependent and ρsassumed = (α,β,γ, δ)
fits for the data. (A) Hit and false-alarm rates. (Left) Hit and false-alarm
rates as a function of correlation strength, ρs used in the experimental condi-
tions. (Right) Performance as a function of correlation strength, ρs. (B) Minimum
target-distractor orientation difference. Proportion ”target present” responses
as a function of minimum target-distractor orientation difference, separately for
target-present (gray) and target-absent (red) trials in each experimental condition
(columns). (C) Sample standard deviation of distractor orientations. Proportion
”target present” responses as a function of sample standard deviation of distrac-
tor orientations, separately for target-present (gray) and target-absent (red) trials
in each experimental condition (columns).

134



4.5. NEED FOR MODEL COMPARISON

the best possible fitting we can obtain for our data given these models.

However, we still have minor deviation between the model and the data at

one particular data point, the last data point in target-absent trials (red curve) in

the sample standard deviation plot for ρs =
1
3 in Figure 4.21(C, third panel). This

point is nearly missed by predictions of other VP models in this category (com-

pare third panel in row (C) of Figures 4.17, 4.19, 4.20, and 4.21). It indicates that

probably this is the best possible fitting we could obtain for the experimental data

using these models. There may be something special about the characteristic of

that point and we may be missing some particular assumptions in our models

that result in the deviation of models at that point. We may need to put addi-

tional assumptions in the model to incorporate the fit at that particular point in

Figure 4.21(C, third panel). However, we are unaware of the mathematical com-

plexities it will introduce in our existing high-dimensional models. Further, model

VP9 at least does a better job in predicting the behavior at this last data point on

target-absent trials in Figure 4.20(C, third panel). Therefore, for our purposes, we

limit ourselves to this level of fitting for the data and only focus on analyzing and

comparing these models here.

4.5 Need for model comparison

In earlier sections, we analyzed the fits of equal and variable precision models

listed in Table 4.1. We found that none of the EP models could account for the be-

havior of subjects on the target detection experiment (described in Chapter 2). The
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4.5. NEED FOR MODEL COMPARISON

variable precision models with the assumption of mean precision J̄ constant across

experimental conditions were also unsuccessful in reproducing the responses in

the data. But VP models with variable J̄ (except model VP7) provided good pre-

dictions for the data in terms of low RMS errors and high R2 values. However, we

obtained more than one model that had equally well fits for the data. Specifically,

models VP6, VP8, VP9, and VP10 all provided equally well predictions for the

data. But, all these models have different underlying assumptions about ρsassumed .

Therefore, we encounter the issue of discriminating multiple models that gen-

erate equally well predictions for the data. The question is how do we compare

these models, since each model has different number of free parameters, and dif-

ferent assumptions about those parameters. Further, how do we find the model

that provides the best explanation for the data. We thus use the model compari-

son techniques discussed in Section 3.6 to compare different models, and find the

best fitting model. We present the model comparison results for our models in the

following chapter.
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Chapter 5
Data analysis II: model comparison

The purpose of the experimental study described in Chapter 2 was to determine

whether human observers take stimulus correlations into account in a target de-

tection task. We investigate whether observers are optimal in integrating the

structural information in their decisions. If they are not, we wish to determine

the alternative suboptimal processes observers use in their inference process.

To this end, we analyzed our experimental data in Chapter 4 using a variety of

models. We considered different assumptions about encoding precision and cor-

relation strength, ρsassumed in our models. We found that models with equal preci-

sion assumption did not fit well to the data; whereas the variable precision models

provided better predictions for the data. We used gamma distribution to model

the variability of precision across trials and stimuli in variable precision models.

137



5.1. MODEL FAMILIES

We also tested the possibility if the mean precision parameter of the precision dis-

tribution can vary across experimental conditions. We observed that variable pre-

cision models with condition-dependent mean precision provided better predic-

tions for the data as compared to models with condition-independence assump-

tion. Moreover, there were multiple VP models (VP6, VP8, VP9, and VP10) that

generated equally matched predictions for the subjects’ data. Given the choice

between different models (Table 4.1), we wish to select a model that explains the

data most parsimoniously.

We continue our analysis from Chapter 4 here and compare models to find the

best fitting model. We combine multiple models in a group or family that share

a common characteristic and then find the best model in that group based on

Bayesian or Akaike information criteria. We make our conclusions based on the

hypothesis of the selected models. We use these comparisons to conclude why

certain models are better than others. We also analyze the maximum-likelihood

parameter estimates of the best fitting models and explain the behavior of subjects

based on the estimated values of the model parameters.

5.1 Model families

We first combine our models into different families based on their assumptions

about a certain parameter. We note that the models listed in Table 4.1 have varying

number of parameters and they have different assumptions about those param-

eters. Some models share a common assumption about a particular parameter,
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while they differ about others. For example, models EP1 to EP10 assume equal

encoding precision; however, they have varying assumptions about the correla-

tion coefficient, ρsassumed . Therefore, these models can be grouped into one family

based on their common assumption about precision. Similarly, variable precision

models (VP1 to VP10) represent another family of models based on the precision

assumption. In this case, ”precision” represents a common model characteristic

or a factor, while equal and variable precision are two model families in this factor.

All models in a family or a level, have a common assumption about the factor or

characteristic it belongs to.

Similarly, we identify other factors and their respective model families in our

list of models. We combine our models based on following three factors: (1)

precision, (2) dependence of precision parameter, and (3) the assumption about

ρsassumed . The first factor characterizes the nature of precision as either equal or

variable among models and these represent the two model families in this factor.

The second factor considers the dependence of precision parameter on experi-

mental conditions. Specifically, the precision parameter, J (EP) or J̄ (VP) can either

be condition-independent or condition-dependent. The third factor describes the

assumption about ρsassumed . We have considered following different assumptions

about ρsassumed in our models: (0, 1
3 , 2

3 , 1), (0, 0, 0, 0), (α,α,α,α), (α,α,α,β), and

(α,β,γ, δ).

Therefore, we combine all 20 models in different families based on the un-

derlying factor. We then compare these model families based on Bayesian and

Akaike information criteria to find the best fitting model family in the factor. Such
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Factor Model family Models belonging to the
family

Number
of models

Precision EP EP1 to EP10 10
VP VP1 to VP10 10

J or J̄ condition-independent EP1 to EP5, VP1 to VP5 10
condition-dependent EP6 to EP10, VP6 to VP10 10
(0, 1

3 , 2
3 , 1) EP1, EP6, VP1, VP6 4

(0, 0, 0, 0) EP2, EP7, VP2, VP7 4
ρsassumed (α,α,α,α) EP3, EP8, VP3, VP8 4

(α,α,α,β) EP4, EP9, VP4, VP9 4
(α,β,γ, δ) EP5, EP10, VP5, VP10 4

Table 5.1: List of models based on different factors and model families. Group-
ing of models in different model families based on a common assumption about
the factor.

a grouping of models in different families or levels helps us in comparing multiple

models together which have a common characteristic.

In summary, we group our models in different families based on three differ-

ent factors. Table 5.1 illustrates a detailed categorization of the models listed in

Table 4.1 in different factors and their respective model families.

We compare models across different families based on a common factor and

select the model family that is preferable in model comparison. We use both

Bayesian information criterion (BIC) and Akaike information criterion (AIC) for

model selection. As explained in Section 3.6, these criteria are based on the max-

imum log-likelihood of a model and penalize the model for its additional free

parameters. The penalty term is stronger in the case of BIC as compared to AIC.

The model with a lower value of BIC (or AIC) is favorable over a model with a
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higher value of BIC (or AIC) in model selection. As an example, we use BIC and

AIC to compare equal and variable precision model families and determine which

one of them is favorable on the criteria. A favorable model (or model family) has

the least value of BIC or AIC.

We usually consider the relative BIC (or AIC) differences between a model

and the putative best fitting model. In such a case, a positive relative BIC (or

AIC) model difference confirms that the model is worse as compared to the hy-

pothesized best fitting model. The magnitude of relative BIC (or AIC) difference

determines the similarity between the predictions of the two models.

In the following sections, we present our model comparison results for differ-

ent model families belonging to the three different factors. We study both individ-

ual and average subject based comparisons. We find that individual differences

lead to inconsistent and mixed results in some cases. We first analyze the com-

parison of models belonging to equal and variable precision families in the first

model factor.

5.2 Equal versus variable precision

We first compare our models based on the precision factor and this factor consists

of two model families. Each family has 10 models, namely EP1 to EP10 in equal

precision and VP1 to VP10 in variable precision model family.

We analyzed the model fits of EP and VP models in Chapter 4. We found that
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the majority of EP models fitted poorly to the data as compared to their variable

precision equivalents. But, some of the EP models generated good predictions for

the subjects’ responses. For instance, predictions of model EP10 in Figure 4.11 are

comparable to those of VP1 (Figure 4.12), while it fits better to the data than model

VP2 (Figure 4.13). In such a case, we wish to find the model that best explains the

data and is preferable over others in model selection.

Figure 5.1 shows the BIC (top) and AIC (bottom) comparisons of EP models

with respect to their VP equivalents. Each vertical bar represents the relative BIC

(or AIC) difference of an EP model from its VP equivalent. For example, we con-

sider the relative BIC (or AIC) difference of model EP1 from model VP1 or model

EP3 from model VP3. The left panels in Figure 5.1(A) and (B) shows the individ-

ual subjects’ BIC and AIC comparisons of EP models relative to VP models. We

find that all subjects have large positive BIC and AIC relative differences for all

EP models. This signifies that variable precision models are preferable for all sub-

jects based on both criteria. Moreover, the difference magnitudes are larger than

500 points for majority of subjects confirming the poor fitting of EP models to the

data.

We also consider the average BIC (Figure 5.1(A, right)) and AIC differences

(Figure 5.1(B, right)) between EP and VP models. We observe a clear trend of fa-

vorable VP models on both criteria. The large positive average relative differences

(more than 200 points) provides a strong evidence that variable precision models

outperforms their equal precision equivalents when fitting to the data. We thus

conclude that subjects use varying precision across stimuli and trials on the target
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detection experiment.
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Figure 5.1: BIC and AIC model comparisons: equal versus variable precision
models. (A) BIC model comparison. (Left) Relative BIC differences of equal pre-
cision models with respect to variable precision models for individual subjects.
Each vertical bar represents the BIC difference of an EP model from its equivalent
VP model. (Right) Averaged (across subjects) relative BIC differences of equal pre-
cision models with respect to variable precision models. (B) AIC model compar-
ison. Similar to (A) with AIC relative differences. A positive BIC or AIC relative
difference indicates that the EP model is worse as compared to its equivalent VP
model. Throughout the chapter, the error bars indicate the unit standard error
mean (s.e.m).
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5.3 Condition-independent J̄ versus condition- depen-

dent J̄

In Section 4.4, we observed that variable precision models have better fits to the

data as compared to the equal precision models (Section 4.3). Further, the model

comparison results in Figure 5.1 confirm that subjects use varying precision to

make decisions on the experiment. These models are strongly preferable in both

model selection criteria. Hence, we only consider variable precision models for

our further model comparison results.

We now compare variable precision models to determine the dependence of

precision parameter on experimental conditions. Specifically, we have two model

families in this factor: VP models with mean precision, J̄ condition-independent

or with J̄ condition-dependent. We found in Section 4.4 that condition-dependent

models (VP6, VP8, VP9, and VP10) provide better fit to the data, while condition-

independent models (VP1 to VP5) fail to explain the responses of subjects on the

homogeneous conditions. Based on the model fittings and predictions, models

with condition-dependent J̄ outperform their equivalents with condition- inde-

pendence precision assumption. However, the better fits of condition-dependent

VP models could be attributed to their additional free parameters (see Table 4.1).

Thus, we need to select the best model family among the two.

We compare both these model families of variable precision models: with
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condition-independent J̄ (models VP1 to VP5) and condition-dependent J̄ (mod-

els VP6 to VP10) using BIC and AIC in Figure 5.2. The figure shows the BIC

and AIC differences of condition-independent models relative to their condition-

dependent equivalents. For example, the first vertical bar for the first subject in

Figure 5.2(A, left) represents the relative BIC difference of VP1 model with respect

to VP6 model (both have a common assumption that ρsassumed = ρstrue). Hence, the

different color bars represent the following differences: VP1-VP6, VP2-VP7, VP3-

VP8, VP4-VP9, and VP5-VP10. Clearly, a positive relative BIC or AIC difference

indicates that condition-dependent model is preferable in the comparison.

In Figure 5.2(A, left), we note that the BIC comparisons based on individual

subjects are unclear. A total of 5 subjects favor condition-dependent models, while

4 subjects prefer condition-independent models. The other two subjects show

mixed preference depending on the different assumptions about ρs in different

models. Similarly, subject based AIC comparisons in Figure 5.2(B, left) do not give

conclusive results for some subjects. Though, majority of subjects clearly favor

condition-dependent J̄ models with large relative AIC differences. We thus obtain

inconsistent results based on the two criteria and they are mainly because of differ-

ent penalty terms. Bayesian information criterion strongly penalizes a model for

its additional free parameters, as compared to Akaike information criterion (Sec-

tion 3.6). We note that condition-dependent precision models have 3 additional

free parameters than condition-independent models (see Table 4.1). Therefore,

BIC strongly penalizes these models and we find inconclusive results in this case.

We also analyze the average (across subjects) relative BIC and AIC differences
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Figure 5.2: BIC and AIC model comparisons: VP models with condition-
independent mean precision J̄ versus experimental condition-dependent J̄. (A)
BIC model comparison. Relative BIC differences of condition-independent J̄ VP
models with respect to condition-dependent J̄ models for each subject (left) and
average subject (right). (B) AIC model comparison. Similar to (A) with AIC dif-
ferences.
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of models belonging to the two families in the right panels of Figure 5.2(A) and

(B). These comparisons show a clear preference of condition-dependent precision

models based on both criteria. Moreover, the difference magnitudes are large.

This is because some subjects show a strong preference for condition-dependent

model family, hence their individual BIC and AIC differences are relatively large.

The large error bars in average model comparisons reflect the individual differ-

ences and the inconsistent choice for the model family among subjects.

Therefore, we find that models with condition-dependent J̄ are favorable over

condition-independent J̄ models in average BIC and AIC model selection. This

finding is consistent to our observation in Section 4.4 that these models generate

better predictions for subjects’ psychometric curves. However, it would be dif-

ficult to conclude that VP models with condition-dependent J̄ represent the best

model family since the choice of a model family is different across individual sub-

jects.

In order to compare models based on the assumption about ρs, we only con-

sider variable precision models with condition-dependent J̄. In addition to their

preference in the average BIC and AIC model comparisons, these are the only

models which fitted successfully predicted the behavior of subjects on the experi-

ment.
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5.4 Comparison based on ρsassumed

Thus far, we find that variable precision models outperform equal precision mod-

els by a huge margin (Figure 5.1) in model selection criteria. Further, we ob-

serve that VP models with condition-dependent mean precision are favorable

over models with condition-independent J̄ (Figure 5.2). Both these results are

based on precision factor. We now compare variable precision models based on

the assumption about ρsassumed .

The models described in Section 4.2.1 have distinct assumptions about ρs and

in particular, we consider five different assumptions in our models ρsassumed =

ρstrue , ρsassumed = (0, 0, 0, 0), ρsassumed = (α,α,α,α), ρsassumed = (α,α,α,β), and

ρsassumed = (α,β,γ, δ). Analyzing the model predictions in Sections 4.3 and 4.4,

we find that there are multiple models which have equally well fits for the data

(see Figures 4.17, 4.19, 4.20, and 4.21). These models are VP6 (ρsassumed = ρstrue),

VP8 (ρsassumed = (α,α,α,α)), VP9 (ρsassumed = (α,α,α,β)), and VP10 (ρsassumed =

(α,β,γ, δ)). Thus, there are multiple assumptions of ρsassumed that equally well

predict the behavior of subjects. Therefore, the question arises: which one of

these models best explains the data? To answer this question, we compare mod-

els VP6 to VP10 using BIC and AIC. We note that all these models have a com-

mon assumption about encoding precision and only differ in the hypothesis about

ρsassumed .

Figure 5.3 shows the relative BIC (top) and AIC (bottom) differences for indi-

vidual subjects (left) and average subject (right). The average subject comparison
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Figure 5.3: BIC and AIC model comparisons: VP models with condition-
dependent J̄ and different assumptions about ρsassumed . (A) BIC model compari-
son. Relative BIC differences of condition-dependent VP models having different
assumptions about ρsassumed with respect to VP9 model (with ρsassumed = (α,α,α,β))
for individual subjects (left) and average subject (right). (B) AIC model compari-
son. Relative AIC differences of condition-dependent VP models with respect to
VP10 model (with ρsassumed = (α,β,γ, δ)) for individual subjects (left) and average
subject (right).
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results in Figure 5.3(A, right) and (B, right) show that each criterion selects a dif-

ferent favorable model. Model VP9 has the smallest BIC value in the family, while

VP10 is the preferable model based on AIC comparison. But both models only

differ by a few points in the selection criteria. The average relative BIC difference

between VP9 and VP10 models is 6.91, while it is about 5.46 points based on AIC.

This difference is significantly small to distinguish the two models apart and sug-

gests that both models make similar predictions for the subject’s responses on the

experiment.

Thus, the results are inconsistent based on BIC and AIC comparisons. This

is mainly due to the difference between penalty terms of the two model selection

criteria. We note that model VP10 has 10 parameters, while VP9 has 8 free parame-

ters (Table 4.1). We recall that each subject performed 3600 trials in the experiment

(Section 2.5.3), hence, the penalty term in BIC (Eq. (3.6)) scales each additional pa-

rameter in the model by log(3600) ≈ 8.19. This amounts to log(3600)× 10 ≈ 81.9

penalty points for a subject in the case of VP10 model. On the other hand, the

penalty term is about 65.5 points for VP9 model. Therefore, model comparison

based on BIC would prefer the VP9 model in case the maximum log-likelihoods

of the two models are comparable. The average subject comparison in the right

panel of Figure 5.3(A) illustrates such a preference of VP9 model as compared to

the higher dimensional VP10 model.

Similarly, we can analyze the average AIC comparison in Figure 5.3(B, right).

The two models only differ by 4 points in AIC penalty term and hence, the most

general model VP10 is preferred over others in AIC model selection.
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We also find that models VP7 and VP8 having the assumptions of zero and

constant correlations perform poorly in both BIC and AIC average model com-

parisons. The large positive relative differences of these models with respect to

the winning models indicate the poor predictions of these models for the data.

We observe that model VP6 having the assumption of ρsassumed = ρstrue also loses

to winning models in BIC and AIC average comparisons by 24.4 and 42.3 points,

respectively. Therefore, the model selection results confirm that models VP9 and

VP10 provide better description of the data over other three condition-dependent

VP models. This indicates that subjects make suboptimal inferences on the ex-

periment and use incorrect assumptions about the generative model (described in

Figure 2.1) in detecting a target on the task.

However, a large variation in model preference is seen among individuals in

the left panels of Figure 5.3(A) and (B). The figure shows the relative BIC differ-

ences of other models with respect to VP9 model, while on AIC comparison, the

differences are shown with respect to VP10 model. We find that there is no single

model that is favored by all subjects. Models VP6, VP9, and VP10 are really close

in predictions for majority of subjects and only differ by a few points. This suggest

that these models are hard to distinguish on the BIC and AIC measures based on

individual differences. Perhaps subjects use different strategies to make decisions

on the experiment. However, it is difficult to confirm such a possibility given the

limitations of the model comparison techniques we use here.

Therefore, based on the comparison results for models VP7 and VP8 for ma-

jority of subjects, we conclude that subjects do take into account the statistical
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structure present in visual scenes to make decisions. Further, they also discrimi-

nate the different experimental conditions and use different strengths of correla-

tions. However, it is difficult to select the best model between VP9 and VP10 mod-

els since they are relatively close in both AIC and BIC comparisons (Figure 5.3).

Hence, it is hard to say whether subjects use different strengths of correlations

in different experimental conditions (based on VP10 model) or they treat the first

three experimental conditions similarly and the homogeneous condition differ-

ently as hypothesized by VP9 model.

We further perform a rejection rate analysis to find a single model that best

explains the experimental data.

5.5 Rejection rate analysis

Based on the model comparison results in previous sections, it is difficult to select

the model that best describes the subjects’ behavior on the experiment. Thus, we

use rejection rate analysis to determine which model family is preferable in each

factor [149]. Table 5.1 lists the three different factors present in our 20 models.

Further, each factor has different number of model families that share a common

assumption about a parameter in the factor.

We first find the model with least BIC (or AIC) value (among all models) for

each subject and it is the most favorable or winning model for that subject. We

define the rejection criterion as the BIC (or AIC) difference of a model with respect
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to the winning model of each subject. For each model family in a factor, we com-

pute the number of subjects that reject all its members as a function of the rejection

criterion. That is, we count the number of subjects that reject all models belonging

to that particular model family for a given criterion. We repeat this process at all

values of the BIC or AIC rejection criterion and plot the number of subjects that

rejected a particular model family as a function of the criterion in Figure 5.4.

Figure 5.4(A) shows the results for the first model factor, the assumption of

encoding precision. Regardless of the rejection criterion, the entire family of equal

precision models is rejected for majority of subjects in terms of both BIC (top)

and AIC (bottom). Moreover, all subjects reject EP models for a large criterion

difference ranging up to 200 points. While, none of the subjects reject the variable

precision model family indicating that all individuals have their best models in

this model family. This provides a strong evidence that variable precision models

are indeed better in describing the behavior of subjects on visual search tasks as

found recently in many studies [98, 150, 99, 137, 149].

Figure 5.4(B) shows the rejection analysis for the second factor, the dependence

or independence of the encoding precision parameter on experimental conditions.

At any given rejection criterion for both BIC (top) and AIC (bottom), most of the

subjects select the model family with condition-dependent precision parameter.

The number of subjects under a rejection criterion of 0 determines the number of

subjects for which the winning model belongs to the model family being consid-

ered. For example, in the top panel of Figure 5.4(B), there are 4 subjects that re-

jected condition-dependent encoding precision models, while 7 rejected the other
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Figure 5.4: Rejection rate curves: comparison of different model families in
each model factor. Each column corresponds to a factor and a color represents
a particular model family or level belonging to the factor. The model compari-
son is based on all 20 models for each factor. (A) Factor 1: precision. Number of
subjects for whom all models belonging to a certain family or level (EP or VP) are
rejected as a function of the rejection criterion based on BIC (top) and AIC (bot-
tom) differences. A model is rejected if it has a higher BIC or AIC than that of the
winning model for a subject. For example, when both BIC and AIC rejection crite-
ria is 100, all models of the EP family are rejected, while none of the subjects reject
VP models. (B) Factor 2: dependence of precision parameter on experimental
conditions. Similar to (A). (C) Factor 3: assumption about correlation strength
ρsassumed . Similar to (A).
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family of models. This implies that based on BIC model selection, majority of sub-

jects’ responses (63.6%) are best explained by models belonging to the condition-

dependent family. On the other hand, 9 subjects have winning model in this fam-

ily based on AIC differences (bottom panel of Figure 5.4(B)). Further, all subjects

prefer model family with condition-dependent precision as the rejection criterion

increases. Overall, there is a clear separation between the two model families and

subjects more frequently reject the models that assume the encoding precision to

be constant across experimental conditions.

Finally, the rejection plots based on the correlation coefficient factor are dis-

played in Figure 5.4(C). There are five levels in this factor corresponding to the

different assumptions about ρs. These levels are described in Table 5.1. We ob-

serve that the distinction between models is unclear in terms of BIC differences

(top). But, the models with the assumption of ρsassumed = (0, 0, 0, 0) and ρsassumed =

(α,α,α,α) are more frequently rejected by subjects at any given rejection criterion

for both BIC (top) and AIC (bottom) differences. Next, we note that majority of

subjects reject the model with ρsassumed = ρstrue = (0, 1
3 , 2

3 , 1) as compared to the

models with the assumptions of ρsassumed = (α,α,α,β) and ρsassumed = (α,β,γ, δ).

This suggests that subjects are suboptimal in inferring the true values of stimulus

correlations, ρs in the experiment. However, it is still difficult to determine which

of the two strategies subjects follow. We see mixed results in terms of both BIC

(top) and AIC (bottom) differences. In AIC comparison, the models with ρsassumed

fitted per condition is less frequently rejected by individuals as compared to the

model family that assumes constant correlations across first three experimental
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conditions and a different in the case of homogeneous distractors; whereas we see

a reverse trend for the choice of model on BIC rejection criterion (top). Therefore,

there is a conflict between the choice of the best model based on the two criteria.

It may be the case that the mixed results here reflect individual differences: some

subjects might have used different correlations across experimental conditions,

while some might have treated the conditions with partial correlations identically

and the homogeneous condition differently in making their decisions.

These results also agree with our earlier observations about the model predic-

tions for VP9 and VP10 models in Figures 4.20 and 4.21, respectively. Both these

variable precision models predict the data equally well, and also their model fam-

ilies show conflicting winning preference in model comparisons (Figure 5.3) and

rejection rate analysis (Figure 5.4).

In order to resolve the conflict between the two models, we analyze the maximum-

likelihood parameter estimates of the VP9 and VP10 models. The parameter esti-

mates may reflect the cause of similar predictions of the two models.

5.6 Parameter estimates

Parameter estimates for the models VP9 and VP10 are given in Table 5.2. Here J̄i

denotes the estimated mean precision for the gamma distribution of precision in

the ith condition. Similarly, ρi represents the estimated parameter value of ρsassumed

in the ith condition of the experiment. The parameters τ , the scale parameter of
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Model Parameter Mean ± SEM Median
J̄1 0.1097 ± 0.0184 0.1036
J̄2 0.1077 ± 0.0206 0.1036
J̄3 0.1148 ± 0.0227 0.1225
J̄4 0.2651 ± 0.0816 0.1447

VP9 ρ123 0.4030 ± 0.0793 0.5
ρ4 0.7515 ± 0.1010 0.9333
τ 0.7433 ± 0.2877 0.3683
pT 0.5048 ± 0.0046 0.5
J̄1 0.0981 ± 0.0158 0.0877
J̄2 0.0937 ± 0.0167 0.0742
J̄3 0.1022 ± 0.0185 0.0877
J̄4 0.2376 ± 0.0623 0.1447
ρ1 0.4333 ± 0.0737 0.5

VP10 ρ2 0.3939 ± 0.0818 0.4667
ρ3 0.4818 ± 0.0896 0.4667
ρ4 0.7939 ± 0.0856 0.9333
τ 0.5691 ± 0.1718 0.3683
pT 0.5036 ± 0.0043 0.5

Table 5.2: Maximum-likelihood parameter estimates of VP9 and VP10 models.
The estimates of the mean precision and scale parameter of the precision distri-
bution are given along with the estimates of correlation strength ρsassumed in each
experimental condition (where applicable) and of pT, the observer’s prior proba-
bility that the target is present.

the gamma distribution of precision, and pT, the observer’s prior probability that

the target is present, are estimated as a constant parameter across all conditions in

the experiment.

We observe that the mean estimated values of J̄i are really close for i = 1, 2, 3,

while the magnitude order of the mean value of J̄4 differs significantly in both

models. This suggests that probably subjects use similar levels of precision in

case of experimental conditions with partially correlated stimuli, while they have
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higher precision in detecting a target on the homogeneous condition.

The trend in the values of J̄ matches our expectation since finding a target

among identically oriented distractors would be easier compared to the randomly

oriented stimuli. Therefore, an observer would be more precise in the experimen-

tal condition with ρs = 1. Also, we note that subjects use near uniform prior for

the target present probability in both models. Further, the maximum-likelihood

estimates of the two models suggest that subjects over estimate the low correlation

strengths, but perform nearly optimally when distractors are perfectly correlated.

Figure 5.5 shows the behavior of individual parameter estimates for model

VP9 in (A) and VP10 in (B). We note that the estimates for both VP9 and VP10

models have a similar trend. The parameters closely follow a similar behavior for

majority of subjects and the mean parameter estimates behave nearly identically.

The estimates of prior over target presence (first column) and τ (second column)

are similar for the two models for most individuals. Also, the values of J̄ (third

column) looks nearly identical in both models for most of the subjects except for

minor deviations. The mean estimated values of J̄ show a near constant trend

in the first three experimental conditions for the model VP10 (Figure 5.5(B, third

column)). Further, the estimates of ρsassumed are close in the partial correlation con-

ditions.

A similar trend in parameter estimates of the two models provides an expla-

nation for the equally well model predictions of both models for the data and the

conflicting choice of models on BIC and AIC model comparisons.
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Figure 5.5: Individual subject parameter estimates of VP9 and VP10 models. (A)
Parameter estimates of VP9 model. Maximum-likelihood estimates of pT, the ob-
server’s prior probability of target presence (first column) and the scale parameter
τ (second column) for each subject. Individual (gray) and average subject (black)
estimates of mean precision J̄ in different experimental conditions (third column).
Estimated values of correlation coefficient ρs for each individual (gray) and av-
erage subjects (black) as a function of true correlation strength (diagonal) in the
experimental conditions. (B) Parameter estimates of VP10 model. Similar to (A).
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5.7 Conclusions and discussion

Based on the model fittings (Sections 4.3 and 4.4) and model comparisons dis-

cussed above, we conclude that subjects use the statistical information of visual

scenes to make decisions. That is, they take correlations of the distractors into

account in detecting a target on the visual search experiment. However, they are

suboptimal in inferring the true correlation strengths that were used to gener-

ate the stimuli in different experimental conditions. The model comparison re-

sults based on Bayesian information criterion (Figures 5.3(A) and 5.4(C, top)) sug-

gest that perhaps subjects treat the partial correlation conditions identically and

find it difficult to distinguish the distinct strengths of weak correlations in the

scenes. However, they behave differently when the distractors are homogeneous

and show an improved performance in the average results.

While the results based on Akaike information criterion (Figures 5.3(B) and

5.4(C, bottom)) provide evidence that perhaps subjects infer different levels of

correlation strengths in different experimental conditions. But they infer incorrect

values leading to the suboptimal behavior. Further, we explore that subjects use

variable precision in making decisions (Figures 5.1 and 5.4(A)). This precision not

only varies over trials and stimuli, but also vary across experimental conditions

(Figures 5.2 and 5.4(B)). Thus, we find that distribution of encoding precision de-

pends on the strength of correlation used in an experimental condition.

Our results are inconclusive here about how subjects actually infer the differ-

ent correlation strengths. This could be because of many underlying reasons. It
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may be that the individuals’ differences lead to mixed results: subjects probably

use different strategies to make decisions on the task. This would be difficult

to examine using the measures we used and would probably involve a detailed

analysis of each subject’s responses. It could also be possible that the models we

considered here lack some assumptions about an unknown parameter that could

be driving subjects’ decisions. For instance, we assumed that subjects learn the

parameter value of the standard deviation of distractors in the generative model

(Figure 2.1). However, this may not necessarily be true and in that case, we would

need models that assume σs as a free parameter and the model decision variable

would need to computed by marginalizing over all possible values of this param-

eter. Further, it could be possible that subjects do not make point estimates of

the correlation strengths, instead they use some unknown distribution over the

true values. Even worse, another possibility could be that subjects do not use any

structural information about in their decisions, but instead use some suboptimal

decision strategies, for example, a threshold rule (similar to the one described in

Chapter 1, Example 1.4.1).

There could be many other alternatives that are possible here and these may

provide a better explanation about subjects’ behavior on the experiment. How-

ever, all these models are more likely to be further complex and multi-dimensional.

The decision variables for these models would be even more sophisticated (com-

pared to Eq. (2.21)) except in the case of threshold models. Therefore, it is a bit

uncertain that observers would use even more complex decision variables in their

decisions. And if they really do, a mathematical treatment of such models would
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be highly intricate and may not be possible in many cases. To explore such possi-

bilities, an advance treatment and hierarchal models may be required.
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Chapter 6
Measurement correlations in a single

target detection task

In many mid- to high-level visual tasks with multiple stimuli, the brain has to

make categorical, global judgements. This involves extracting the relevant infor-

mation from sensory input. Given the nature of a task, the brain needs to process

information differently in relevance to the objective of the task. For instance, in a

target detection task where the goal is to determine whether a predefined object

is present in a visual scene containing multiple objects, the identity of any indi-

vidual object may not be of direct relevance in making a decision. On the other

hand, orientation of each object is equally important in an estimation task where

an observer is required to estimate the mean orientation of the presented objects

in a visual display. Therefore, the objective of a task could play a crucial role in
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guiding our inference process and how our brains extract the meaningful infor-

mation from sensory input. We explore the relevance of the objective of a task on

our decision-making process in some details in Chapter 7.

In addition to a task relevant feature, our judgements also critically depend

on the accuracy of our sensory measurements. The sensory information our brain

receives is usually uncertain since noise corrupts our measurements, especially

when observation time is short and multiple objects are present. The magnitude

of noise in the measurements governs the accuracy of our decisions on a task and

further complicates the inference process. Thus, measurement noise can consid-

erably affects our performance on the task.

Extensive work has been done both at theoretical and experimental levels to

understand the decision processes of the brain. Specifically, several models have

been proposed to study the mechanisms by which the brain converts noisy sen-

sory measurements of a set of stimuli to infer the state of the world. For ex-

ample, how the brain infers a target presence or absence in a scene or how to

estimate the mean orientation of a set of stimuli. These models generally con-

sider decision rules that are applied to the measurements. On the other hand,

the measurements themselves are usually modeled in a rather conventional fash-

ion. They are often considered as independent (between stimuli) and normally

distributed [94, 151, 98, 99]. We have also used these assumptions to model an

observer’s measurements in Chapter 2. However, both these assumptions can be

questioned.

It has been found that neural correlations can extend to distances as long as
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4mm in monkey cortex [31, 39]. This indicates that the sensory measurements can

be strongly correlated [124, 30]. These correlations must be accounted in the mod-

eling of decision processes. Therefore, we are interested in examining the effects

of correlated sensory measurements on our inference process and the accuracy of

decisions.

In order to make categorical, global judgements, the brain not only needs to

take into account the correlations present in the measurements, but also the sta-

tistical structure of the stimuli on a task. For instance, a target could be easily de-

tected in the case of homogeneous distractors as compared to the case when the

distractors have random orientations. In such a case, correlations between sensory

measurements can further influence decisions. As an example, we consider the sit-

uation discussed by Mazyar et al. [98]. Strong measurement correlations result in

more similarity between the measurements and introduce internal structure. This

structure could be helpful in presence of identical distractors, as similar measure-

ments corresponding to the distractors can be grouped and a target can be easily

detected if present. By contrast, when distractors are independently drawn, there

is no external stimulus structure that could be preserved and therefore, we do not

necessarily expect strong measurement correlations to be beneficial. This example

illustrates that measurement and stimulus correlations should not be considered

in isolation.

We expect that correlations between measurements and those between stimuli,

will interact to jointly influence the decisions of an observer. In this chapter, we

explore the interplay between the measurement and stimulus correlations, and
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their effects on the performance of an ideal Bayesian observer in a visual search

task. Specifically, we consider a target detection task similar to the one described

in Section 2.1, but with the modified assumption of correlated sensory measure-

ments.

We first introduce the model set up for the target detection task and then derive

the decision rule that governs the decisions of an optimal Bayesian observer on

the task. Our goal here is to understand how external structure together with

the structure of the measurements impacts the performance of the ideal Bayesian

observer. We examine the performance of the observer in different regimes of

various parameters that determine external stimulus and internal measurements’

structure.

6.1 Model description

To examine how decisions of an ideal observer are determined by the statistical

structure of sensory measurements and stimuli, we consider a single target detec-

tion task where the observer is required to detect a vertical stimulus predefined

as the target in a set of N stimuli. The framework of the task and mathematical

notations are similar to Section 2.1. The binary variable, T, indicates target pres-

ence for T = 1 and target absence when T = 0. The target is present at one of

the N possible locations in half of the trials. Stimulus orientations, denoted by

s = (s1, s2, · · · , sN), are the relevant characteristics of the task. We denote the

target stimulus orientation by sT = 0 and draw the orientations of the distractors
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from multivariate normal distributions given in Eqs. (2.1) and (2.6) when T = 0

and T = 1, respectively. We note that the external structure of a scene is deter-

mined by the number of stimuli, N, the variance of the distractor orientations,σ2
s ,

and the pairwise correlation coefficient, ρs. For the purpose of this task, we con-

sider that the number of stimuli and the external noise, σs are fixed parameters.

We control the amount of structure in a scene by varying the amount of correlation

between distractors, ρs.

We further assume that an observer makes a noisy measurement of each stim-

ulus denoted by xi. This measurement can be thought of as the maximum likeli-

hood estimate obtained from the activity in a population of neurons with recep-

tive fields including location i. We denote by x = (x1, x2, · · · , xN), the vector of N

measurements. It is commonly assumed that the components of x are unbiased,

independent, and normally distributed [94, 99]

xi|si ∼ N (si,σ2
x ).

We consider here the more general situation where the measurements are unbi-

ased, but correlated so that

x|s ∼ N (s, Σx). (6.1)

The N × N covariance matrix, Σx is assumed to have a similar structure as co-

variance matrix Σs (Eq. (2.3)) with constant diagonal terms, σ2
x and off-diagonal

terms, ρxσ
2
x . The assumption that the measurements follow a Gaussian distribu-

tion is almost certainly an oversimplification. However, since this distribution is

not well characterized, Gaussianity is a reasonable first guess that allows us to de-

scribe responses with a minimal number of parameters and leads to analytically

167



6.2. OPTIMAL OBSERVER THEORY

tractable formulations. This assumption is natural when the uncertainty of the

measurement is characterized by the variance of each xi [56, 91]. The structure in

the measurements is characterized by the measurement noise, σx and the correla-

tion coefficient, ρx. Figure 6.1 shows the generative model of the task (A) and the

inference process of an optimal Bayesian observer (B). Distributions of the stimuli

(A) and the corresponding measurements (B) are illustrated in the case of N = 2

stimuli in Figure 6.2.

We now derive the mathematical model for an optimal observer to make de-

cisions on the task. Specifically, we compute the Bayesian decision variable as a

function of different statistical parameters that govern the structure in external

scenes and the observer’s measurements.

6.2 Optimal observer theory

In order to understand how noise correlations in the measurements impact the

decisions of an ideal Bayesian observer, we derive an analytical expression for the

decision variable following similar computations performed in Section 2.2.

An optimal Bayesian observer makes a decision based on the log posterior

ratio given in Eq. (2.9). The observer infers target presence when the decision

variable denoted by dNST(x), is positive, and target absence otherwise. That is,

dNST(x) = log
P(T = 1|x)
P(T = 0|x) = log

P(x|T = 1)
P(x|T = 0)︸ ︷︷ ︸
LNST(x)

+ log
P(T = 1)
P(T = 0)

> 0. (6.2)

168



6.2. OPTIMAL OBSERVER THEORY

sσ

s

x

 ρsT x

T̂

   d(x)

(A) (B) 

Figure 6.1: Statistical structure of relevant task variables in the optimal-
observer model for a (single) target detection task with stimulus and measure-
ment correlations. (A) Generative model. The binary variable, T indicates tar-
get presence for T = 1, and absence when T = 0. The stimulus orientations,
s = (s1, s2, · · · , sN) are drawn from a multivariate normal distribution with mean
vector, sD and covariance matrix, Σs. The standard deviation, σs and the correla-
tion coefficient, ρs of distractor orientations determine the statistical structure of a
visual scene. An observer makes measurements, x = (x1, x2, · · · , xN) of the pre-
sented set of stimuli. These measurements are assumed to be unbiased, but cor-
related, and are drawn from a multivariate normal distribution with a covariance
matrix, Σx. The correlation coefficient, ρx determines the extent of dependence
between the sensory measurements. (B) Inference process. An ideal Bayesian
observer computes the decision variable, d(x) based on the measurements x to
make an estimate, T̂ of the true state variable, T. The decision variable, d(x) is
the log-posterior ratio between the two possibilities of making a response ”target-
present” or ”target-absent”, given the measurements and is given by log p(T=1|x)

p(T=0|x) .

The sign of d(x) determines the estimate T̂ = 1 (d(x) > 0) or T̂ = 0 (d(x) < 0).

169



6.2. OPTIMAL OBSERVER THEORY

-4
σ 

  -
2σ

   
0 

   
2σ

   
 4
σ 

-4σ      -2σ       0        2σ       4σ -4σ      -2σ       0        2σ       4σ -4σ      -2σ       0        2σ       4σ 

-4
σ 

  -
2σ

   
0 

   
2σ

   
 4
σ 

-4
σ 

  -
2σ

   
0 

   
2σ

   
 4
σ 

-4
σ 

  -
2σ

   
0 

   
2σ

   
 4
σ 

Target present Target absent 

s 

x 

ρx = 0 

ρx = 0.95 

(A) 

x 

x 

(B) 

(C) 

Figure 6.2: Stimulus and measurement distributions in the single target detec-
tion with N = 2 stimuli for σs = 15◦ and σx = 4◦. (A) Stimulus distributions
for ρs = 0.5. Stimulus distributions on target present (left) and target absent
(right) trials. On target present trials, one of the two stimuli is uniformly chosen
to be the target and hence the distribution is aligned along the target orientation.
On target absent trials, the two stimuli have a bivariate normal distribution. (B)
Measurement distributions for ρs = 0.5. Measurement distributions for mea-
surement correlations, ρx = 0 in response to the stimulus distributions in (A) on
both target present (left) and target absent (right) trials. On target present tri-
als, the measurement distribution is aligned towards the target orientation (left),
while it represents the bivariate normal distribution in target absent cases (right).
(C) Overlap of measurement distributions for ρs = 0.99. Measurement distribu-
tions on target present (orange) and absent (purple) trials are shown for ρx = 0
(top), and ρx = 0.95 (bottom). The overlap between the two measurement distri-
butions, x|T = 1 and x|T = 0 reduces as the strength of measurement correlation,
ρx increases and the two distributions become more distinguishable. Throughout
the chapter, the axes are measured in terms of the standard deviation, σ , which is
defined by σ2 = σ2

s +σ2
x .
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6.2.1 The log-likelihood ratio

We denote the log-likelihood ratio by LNST(x) and compute it by marginalizing

the information over intermediate variables; the spatial location and the stimulus

orientations, s. We note that it is identical to obtaining Eq. (2.11) in Section 2.2.

Therefore,

LNST(x) = log
P(x|T = 1)
P(x|T = 0)

= log
1
N

N

∑
j=1

ˆ
P(x|s)P(s|T = 1)ds

ˆ
P(x|s)P(s|T = 0)ds

. (6.3)

However, we note that the computation of P(x|T = 1) is not simple and straight

here than as in Section 2.2. It is because P(x|s) can no longer be written as a

product of one-dimensional normal density functions. Therefore, to evaluate the

integral in the case of T = 1, we construct a new N × N matrix Σ
η
s, j for η > 0 as:

(Σηs, j)k,l =



σ2
s , if k = l 6= j,

ρsσ
2
s , if k, l 6= j,

η, if k = l = j,

0, if k = j, l 6= j, or k 6= j, l = j.

(6.4)

Here j ∈ {1, 2, · · · , N} represents the spatial location of the target. By denoting

˜sD as an N-dimensional vector having all components sD, but the jth as sT, we

write

s|(T = 1, j) ∼ lim
η→0+

N ( ˜sD, Σηs, j). (6.5)

We introduced the auxiliary covariance Σ
η
s, j because Σ0

s, j is not invertible, as the

density is singular in the variable with index j.
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In the limit of η→ 0+, we compute the log-likelihood ratio

LNST(x) = log

 1
N

N

∑
j=1

ˆ
P(x|s)P(s|T = 1)ds

ˆ
P(x|s)P(s|T = 0)ds



= log

 1
N

N

∑
j=1

lim
η→0+

ˆ
f (x; s, Σx) f (s; ˜sD, Σηs, j)ds

ˆ
f (x; s, Σx) f (s; sD, Σs)ds

 .

We use product and integral properties of multivariate normal distributions given

in Eqs. (B.3) and (B.4), and define

C = Σs + Σx and C j = Σ0
s, j + Σx (6.6)

to obtain

LNST(x) = log
1
N

N

∑
j=1

f (x; ˜sD, C j)

f (x; sD, C)

= log

[
1
N

√
|C|
|C j|

N

∑
j=1

exp
(
−1

2
(x− ˜sD)

TC−1
j (x− ˜sD)

+
1
2
(x− sD)

TC−1(x− sD)

)]
. (6.7)

The determinant of the matrix C j does not depend on the spatial location param-

eter j since all matrices of type C j can be obtained from each other by permuting

appropriate rows and columns. Moreover, the distributions of the Gaussian vari-

ables, x|(T = 0) and x|(T = 1) are described by their respective covariances given

by matrices C and C j.
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6.2.1.1 Determinants and inverses of matrices C and C j

We further simplify Eq. (6.7) by evaluating the determinants and inverses of the

covariance matrices C and C j, when ρs,ρx 6= 1; otherwise these matrices are sin-

gular. We first decompose these matrices as:

C = D + (ρsσ
2
s + ρxσ

2
x )J and C j = A j + U jEV j,

where D is a diagonal matrix with constant diagonal entries, σ2
s (1− ρs) +σ2

x (1−

ρx), J is a matrix of ones, E is a 2× 2 identity matrix,

and (A j)k,l =



η+σ2
x (1− ρx), if k = l = j,

σ2
s (1− ρs) +σ2

x (1− ρx), if k = l 6= j,

0, otherwise .

Furthermore, the columns of N× 2 matrix U j and rows of 2× N matrix V j are

given by

U j(k,1)
=


σ2

s (1− ρs) +σ2
x (1− ρx), if k 6= j,

σ2
x (1− ρx), if k = j,

and U j(k,2)
= σ2

x (1− ρx) ∀ k,

V j(1,k)
=


1, if k 6= j,

0, if k = j,
and V j(2,k)

=


0, if k 6= j,

1, if k = j.

Additionally, we define the following variables

v =
1

σ2
s (1− ρs) +σ2

x (1− ρx)
, ṽ =

1
σ2

x (1− ρx)
, a = ρsσ

2
s + ρxσ

2
x , (6.8)

V = Nv, V\ j = (N − 1)v, β =
a

1 + aV
, q = a + ρsσ

2
s ρxσ

2
x ṽ, (6.9)

r = 1 + ρsσ
2
s V\ j, and γ = 1 + aV\ j + ρxσ

2
x ṽr. (6.10)
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We apply the generalized Matrix Determinant Lemma (Lemma 2 in Appendix B.3)

to obtain the following determinants:

|C| = 1 + aV
vN , and |C j| =

γ

vN−1 ṽ
.

We use the Woodbury matrix identity (Theorem 2 in Appendix B.3) to compute

the following inverses of both covariance matrices

(C−1)k,l =


v−βv2 if k = l,

−βv2 if k 6= l,

and (C−1
j )k,l =



ṽ− ρxσ
2
x ṽ2r
γ if k = l = j,

v− v2q
γ if k = l 6= j,

− v2q
γ if k 6= l, and k, l 6= j,

−ρxσ
2
x vṽ
γ if k = j, l 6= j, or l = j, k 6= j.

We now substitute the above obtained determinants and inverses of C and C j to

compute the following expressions:

(x− sD)
TC−1(x− sD) = (v−βv2)

N

∑
k=1

(xk − sD)
2 −βv2

N

∑
k 6=l

(xk − sD)(xl − sD)

(x− ˜sD)
TC−1

j (x− ˜sD) =

(
ṽ− ρxσ

2
x ṽ2r
γ

)
(x j − sT)

2 + v
N

∑
k 6= j

(xk − sD)
2

− 2ρxσ
2
x vṽ
γ

(x j − sT)
N

∑
k 6= j

(xk − sD)−
v2q
γ

N

∑
k,l 6= j

(xk − sD)(xl − sD).

Substituting the above obtained expressions in Eq. (6.7) gives us the following

simplified equation for the log-likelihood ratio on the single target detection task
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with correlated measurements

LNST(x) = log

 1
N

√
ṽ(1 + aV)

v γ

N

∑
j=1

exp
(
−1

2

(
ṽ− ρxσ

2
x ṽ2r
γ

)
(x j − sT)

2

− 1
2

(
βv2 − v

)
(x j − sD)

2 −
(
βv2 − ρxσ

2
x vṽ
γ

)
(x j − sD)

N

∑
k 6= j

(xk − sD)

−1
2

(
βv2 − v2q

γ

) N

∑
k,l 6= j

(xk − sD)(xl − sD)

)]
. (6.11)

6.2.2 Bayesian decision variable

The decision variable, dNST(x) defined in Eq. (6.2) characterizes the decision-making

process of an ideal Bayesian observer on the task. It also quantifies the impact of

different (stimulus and measurement structure) parameters on the decisions of the

optimal observer.

Since a target is present with uniform probability on each trial of the task, the

ideal observer uses a uniform prior on T. Therefore, the decision variable to report

”target present” on the task is equivalent to the log-likelihood ratio obtained in

Eq. (6.11),
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dNST(x) = log

 1
N

√
ṽ(1 + aV)

v γ

N

∑
j=1

exp

− 1
2

(
ṽ− ρxσ

2
x ṽ2r
γ

)
(x j − sT)

2︸ ︷︷ ︸
I

− 1
2

(
βv2 − v

)
(x j − sD)

2︸ ︷︷ ︸
I I

−
(
βv2 − ρxσ

2
x vṽ
γ

)
(x j − sD)

N

∑
k 6= j

(xk − sD)︸ ︷︷ ︸
I I I

− 1
2

(
βv2 − v2q

γ

) N

∑
k,l 6= j

(xk − sD)(xl − sD)︸ ︷︷ ︸
IV


 . (6.12)

The above equation gives the decision variable in terms of the model parameters

and the measurements, x. The total number of stimuli, N, the variability, and

co-variability between the distractors’ orientation determined respectively by σ2
s

and ρs, regulate the structure of visual stimuli. The variability, σ2
x and correlation

strength, ρx, describe the structure of the observer’s measurements.

6.2.3 Interpretation of the decision variable

Eq. (6.12) defines a nonlinear decision boundary in the space of measurements,

x. Although the expression is explicit, the decision variable depends in a compli-

cated way on the different parameters that describe the structure of the stimulus

and the response. The variables v and ṽ represent scaled inverse variances corre-

sponding to distractor and target stimulus, while V and V\ j denote the population

sums of v in target present and absent cases, respectively. The parameters β, r, q,
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and γ (Eq. (6.8)) are defined in terms of σ2
s ,ρs,σ2

x , and ρx, and it is difficult to

quantify their explicit impact on decisions and performance of an observer.

However, we note that the formulation of Eq. (6.12) is similar to the decision

variable derived in Eq. (2.21), except for the different scaling parameters. Thus,

Eq. (6.12) can be interpreted in a similar way as in Section 2.2.2. Specifically, we

interpret each exponent term of Eq. (6.12) as an evidence towards the jth stimu-

lus being a target: (I) if the jth measurement is close to the target orientation, this

term increases the likelihood of the jth stimulus being a target; (II) on the other

hand, if the jth measurement is similar to the mean distractor orientation, this

term decreases such a likelihood; (III) the third term compares the sample mean

of distractor measurements with the jth measurement; if the term is large, it is less

likely that the jth stimulus is the target; and (IV) the fourth term can be rewritten

as the sample covariance of distractor measurements; if this term is large it is more

likely that the jth stimulus is the target. Thus, each term is relevant in making a de-

cision whether the jth stimulus is a target or not. The coefficient of each exponent

term contain information about various parameters that govern the stimulus and

measurement structure. The influence of these parameters such as σ2
s ,ρs,σ2

x , and

ρx on different terms of the decision variable, dNST(x) is difficult to understand,

since their dependence is much more intricate.

We next consider a simple and particular case of the decision variable in Eq. (6.12).

Specifically, we evaluate the equation in the absence of measurement correlations.
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6.2.4 Uncorrelated measurements, ρx = 0

We note that when sensory measurements are assumed to be uncorrelated, i.e., for

ρx = 0, the mathematical model of the task reduces to the one described in Sec-

tion 2.1. The variables defined in Eq. (6.8) reduces to the ones defined in Chapter 2

(Eqs. (2.15) and (2.19)) on substituting ρx = 0,

a = ρsσ
2
s , v = w̃, ṽ = w, V = W̃,β = α,

q
γ
= α\ j.

Subsequently, the decision variable, dNST(x), given in Eq. (6.12), reduces to the

variable, dST(x), derived in Eq. (2.21). Thus, the target detection task described

in Chapter 2 is a particular case of the task discussed here having a generalized

assumption about measurement correlations.

We now consider how variations in the external structure parameters together

with the parameters governing the measurements’ structure impact the perfor-

mance of an ideal Bayesian observer. External structure is characterized by the

number of stimuli and the pairwise correlations between them, while the struc-

ture in the measurements is specified by the covariance matrix, Σx. In general, we

cannot assume that these parameters can be varied independently. For example,

neural mechanisms that impact σ2
x almost certainly impact ρx [31, 36, 123]. How-

ever, the dependence between these parameters is not fully characterized and we

therefore explore a range of possible parameter values below.
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6.3 Analysis and Results

Our goal is to describe how stimulus structure, along with the structure of the cor-

responding measurements, affect the decisions of an optimal observer in a target

detection task. We examine how performance changes as stimulus and measure-

ment correlations are varied.

We first note that the stimulus variable, s, follows two different distributions

depending on whether T = 0 or T = 1. In general, measurement noise increases

the overlap between these distributions. The higher the overlap between the two

distributions, the more difficult the decision. However, structured noise in the

measurements can reduce such overlap (Figure 6.2(C)). Therefore, performance

of an ideal observer depends not only on the level, but also on the structure of

measurement noise [6, 4].

We examine Eq. (6.12) numerically in different regimes of stimulus and mea-

surement statistical parameters. Specifically, we consider the following two regimes

determined by the dominance of either external noise, σs or measurement noise,

σx:

(a) weak measurement noise, σ2
x � σ2

s ,

(b) strong measurement noise, σ2
x = σ2

s .

In the following sections, we elaborate how noise correlations in the measure-

ments affect the decision variable, dNST(x) (Eq. (6.12)) and subsequently the per-

formance of an ideal Bayesian observer. We obtain analytical expressions for the
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decision variable in these cases and provide supporting numerical results along

with the best possible intuitive interpretation.

6.3.1 Weak measurement noise, σ2
x � σ2

s

The external structure in a scene is determined by the noise level σs and also by

the pairwise correlation coefficient, ρs. For a fixed noise level σs, the structure

is introduced in the visual stimuli by varying the amount of correlations among

pairs of distractor orientations. A strong external structure is introduced when

ρs = 1, as all distractors are identical and the target is an odd-ball stimulus. In the

cases of ρs < 1, the external structure is weaker, hence detecting a target may not

necessarily be easier. Therefore, we individually treat the cases of weak and strong

external structure in the regime of weak noise in the observer’s measurement.

We denote ε = σ2
x
σ2

s
and expand different terms of Eq. (6.12) about ε � 1. We

only consider terms with larger contribution, i.e., terms of the orders of O( 1
ε ) to

obtain approximations for the decision variable, dNST(x) in different regimes of

parameters.
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6.3.1.1 Strong external structure, ρs = 1

In the case of ρs = 1 and ε� 1 , the coefficients of the different exponent terms in

Eq. (6.12) reduces to the following simplified expressions:

I : ṽ− ρxσ
2
x ṽ2r
γ

≈ 1
σ2

x

I I : βv2 − v ≈ −(N − 1)
Nσ2

x (1− ρx)

I I I : βv2 − ρxσ
2
x vṽ
γ

≈ 1
Nσ2

x (1− ρx)
+O(1)

IV : βv2 − v2q
γ
≈ − 1

N(N − 1)σ2
x (1− ρx)

,

and the leading determinant coefficient becomes√
ṽ(1 + aV)

v γ
≈

√
N(1− ρx)

N − 1
.

Therefore, we obtain the following approximation of the Bayesian decision vari-

able, dNST(x) in this case

dNST(x) ≈ log

 1
N

√
N(1− ρx)

N − 1

N

∑
j=1

exp
(
− 1

2Nσ2
x (1− ρx)

(
(1− Nρx)(x j − sT)

2

− (N − 1)(x j − sD)
2 + 2(x j − sD)

N

∑
k 6= j

(xk − sD)

− 1
N − 1

N

∑
k,l 6= j

(xk − sD)(xl − sD)

))]
. (6.13)
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Furthermore, in the particular case of sT = sD = 0, the above equation reduces to

a much simpler expression that is easier to interpret

dNST(x) ≈ log

 1
N

√
N(1− ρx)

N − 1

N

∑
j=1

exp

− 1
2Nσ2

x (1− ρx)

(1− Nρx)x2
j + 2x j

N

∑
k 6= j

xk −
1

N − 1

(
N

∑
k 6= j

xk

)2


︸ ︷︷ ︸
E j

 .

(6.14)

Clearly, the above expression indicates that an ideal observer uses the strength

of measurement correlations, ρx in a decision. Specifically, in the limit of perfect

noise correlations, i.e., ρx ≈ 1, the exponential term in Eq. (6.14) is approximately

E j ≈

 N − 1
2Nσ2

x (1− ρx)

(
x j −

1
N − 1 ∑

k 6= j
xk

)2
 . (6.15)

Therefore, the optimal observer simply subtracts the mean of the N − 1 measure-

ments of putative distractors from that of the putative target. In the case of per-

fect noise correlations, the measurements of the distractor stimuli are identical.

Thus, on ”target absent” trials, the term E j’s in Eq. (6.15) are zero and therefore,

dNST(x)→ −∞. While on a target present trial, E j is positive and the exponential

diverges to infinity as ρx → 1. The prefactor in Eq. (6.14) approaches zero, how-

ever, the divergence of exponential is stronger. Therefore, dNST(x) → ∞ and an

ideal observer performs perfectly in this case.

We confirm the above analytical observation using numerical simulations in

the case of N = 4 stimuli. We vary the strength of stimulus and measurement
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noise correlations (ρs and ρx, respectively) and examine the trend in the perfor-

mance of an optimal Bayesian observer shown in Figure 6.3(A). For simulation

purposes, we used σs = 15◦ and σx = 4◦ to obtain the weak measurement noise

(σ2
x � σ2

s ) regime.

We observe in Figure. 6.3(A) that the performance of an ideal observer in the

case of weak measurement noise is nearly independent of ρs and ρx for weak

external structure (ρs < 1). However, it depends strongly on ρx when the ex-

ternal structure is relatively stronger, i.e., ρs ≈ 1. In particular, any amount of

measurement correlations strongly drives the performance in such a case (seen in

Figure. 6.3(A) and (B)). Moreover, we note that perfect performance is observed

at ρs = ρx = 1 (Figure 6.3(B)). Hence, in the presence of strong external structure

(all distractors having identical orientations), strong measurement correlations en-

hance the performance of an optimal Bayesian observer.

The increased performance with increasing external correlations, ρs accords

with intuition that strong external structure makes detecting a target easier. How-

ever, measurement structure can play an equally important role. In the presence

of strong external structure (homogeneous distractors), measurement correlations

can significantly improve performance as seen in Figure 6.3(B).

Perfect performance is achieved at ρs = ρx = 1 and we can understand it

intuitively. In this case, measurements xi of the stimuli are obtained by adding

the same realization of a random variable (noise) to each stimulus characteristic,

si. In target absent trials, all measurements are hence identical. If the target is

present, the vector of measurements contain a single outlier and an ideal observer
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Figure 6.3: Performance of an ideal Bayesian observer in the presence of
measurement and stimulus correlations on a single target detection task
when the measurement noise is weak as compared to the external noise,
σ2

x � σ2
s (σs = 15◦,σx = 4◦). (A) Variation in performance with measurement

and stimulus correlations. Performance of an optimal observer as a function of
stimulus correlations, ρs and measurement correlations, ρx on a task with N = 4
stimuli. (B) Change in performance with measurement correlations. Proportion
of correct responses as a function of measurement correlations, ρx in the case of
weak external structure, ρs = 0.5 (left) and strong external structure, ρs = 1 (right)
for N = 4 stimuli in the task. (C) Decision boundary and measurement distri-
butions for N = 2 stimuli and ρs = 0.5. Decision boundary, dNST(x) = 0 (black)
and measurement distributions corresponding to correct inferences (orange) and
incorrect inferences (purple) on target present (left) and target absent (right) cases.
The green curves (lines on left, ellipses on right) represent 2 units standard devia-
tion of the stimulus distribution.
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can thus distinguish the two cases perfectly.

6.3.1.2 Weak external structure, ρs < 1

We also observe that measurement correlations have little effect on performance

when external structure is weaker, i.e., when ρs < 1 (Figure. 6.3(A)). To intuitively

understand such a behavior, we again consider the case of ρx ≈ 1 so that mea-

surements are obtained by equal rotation of each stimulus orientation. An ideal

observer can use the structure of measurement noise in making a decision. How-

ever, the observer cannot use knowledge about a particular realization of noise. In

other words, the observer can use the fact that the measurements are obtained by

rotating the stimulus by approximately the same angle, but not the exact angle

of the rotation. If there is only weak external structure, it is now difficult to tell

whether one of the stimuli is an outlier. An ideal observer must therefore infer

whether a target is present from the individual measurements of stimuli. Hence

measurement correlations provide little help in the absence of external structure.

These observations are also reflected in the structure of the decision boundaries

(dNST(x) = 0) and distributions of the measurements illustrated in Figure 6.3(C).

In the target present (Figure 6.3(C, left)) and absent trials (right), the distribu-

tion of measurements is determined predominantly by variability in the stimulus.

Measurement correlations have little effect on these distributions. As a result, the

decision boundary also changes little with an increase in ρx. This is in contrast to

the case when ρs ≈ 1, where internal variability can be important in increasing

the overlap between the distributions of x|T = 1 and x|T = 0 (see Figure 6.2(C)).
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We confirm this intuition about the role of measurement correlations by ap-

proximating the decision variable in this case and expanding the coefficients of

exponent terms in Eq. (6.12) as follows

I : ṽ− ρxσ
2
x ṽ2r
γ

≈ 1
σ2

x

I I : v−βv2 ≈ 1 + (N − 2)ρs

σ2
s (1− ρs)(1 + (N − 1)ρs)

= O(1)

I I I : βv2 − ρxσ
2
x vṽ
γ

≈ O(1)

IV : βv2 − v2q
γ
≈ O(1).

We further approximate the leading determinant coefficient in Eq. (6.12) as√
ṽ(1 + aV)

v γ
≈

√
σ2

s (1− ρs)(1 + (N − 1)ρs)

σ2
x (1 + (N − 2)ρs)

and combine the above terms to obtain the following approximation of the deci-

sion variable when σ2
x � σ2

s and ρs < 1,

dNST(x) ≈ log

[
1
N

√
σ2

s (1− ρs)(1 + (N − 1)ρs)

σ2
x (1 + (N − 2)ρs)

N

∑
j=1

exp

(
−
(x j − sT)

2

2σ2
x

)]
. (6.16)

This approximation is relatively simpler and easier to understand. We easily see

that the strength of measurement correlations, ρx does not affect the decisions

of an ideal observer at highest order in (σ2
x/σ

2
s ). Measurement correlations only

weakly impact the decision and hence performance. Additionally, the terms in the

exponent are x2
j/2σ2

x . Hence, the orientation at each location is considered sepa-

rately and weighted by the precision of measurements, 1/σ2
x . The ideal observer

hence makes a decision primarily based on the evidence from each stimulus sep-

arately in this case.

186



6.3. ANALYSIS AND RESULTS

In sum, external structure of a scene implies that stimulus distributions s|T =

1 and s|T = 0 are concentrated on low-dimensional subspaces. Even small noise

can increase the overlap between the distributions of measurements x|T = 1 and

x|T = 0. However, noise in the measurement and external structure can conspire

to decrease the overlap between the distribution of measurements. This happened

in the present case when ρs and ρx are both close to 1 (Figure 6.3(B)).

In the absence of external structure, the signal distributions s|T = 1 and s|T =

0 are not concentrated along low-dimensional manifolds. Here external variabil-

ity, σ2
s always dominates and low intensity measurement variability, σ2

x , has little

effect on the performance of an ideal observer.

6.3.2 Strong measurement noise, σ2
x = σ2

s

With a single target, measurement correlations have little impact on the perfor-

mance of an ideal observer, unless external structure is strong. Although, external

variability is typically expected to be much stronger than measurement variabil-

ity in most situations [14], we next consider the case when the two sources of

variability are comparable, σ2
x = σ2

s . The case of σ2
x � σ2

s is insignificant to con-

sider, since the increased measurement noise leads to poor performance and the

observer essentially makes a guess on each trial.

Increasing measurement noise,σx, trivially leads to a decrease in performance.

However, in the limit of perfect stimulus and measurement correlations, i.e., ρs,ρx ≈
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1, an ideal observer still performs perfectly. But, it is not clear how the perfor-

mance is affected at intermediate values of these correlations. An analytical ap-

proximation of Eq. (6.12) is difficult to obtain in this particular case. We thus

explore this case numerically and provide an intuitive reasoning for the observed

behavior. For simulation purposes, we consider the case of N = 4 stimuli and

σs = σx = 15◦. Figure 6.4(A) shows the performance of an optimal observer with

varying strengths of stimulus, ρs and measurement correlations, ρx.

On comparing Figure 6.4(A), (B) with Figure 6.3(A), (B), we observe that mea-

surement correlations have a strikingly different effect here than in the case of

weak measurement noise. Even with no external structure, ρs = 0, performance

increases slightly (approximately 5-6%) with an increase in ρx. Surprisingly, for

intermediate values of external correlations, ρs = 0.5, measurement correlations

have a negative impact on performance. The reason for this unexpected behavior

is not clear, as Eq. (6.12) is difficult to analyze in this case. However, it is obvious

that structure present in the observer’s measurements play a much greater role in

decision making when noise is very large, unlike the weak noise case where we

see little change in structure when ρx is varied (Figure 6.3(A)).

We see this fact reflected in the distributions of the responses and the decision

boundary in Figure 6.4(C), which are both strongly affected by measurement cor-

relations ρx. Moreover, we see a similarity between this decision boundary and

the one shown in Figure 6.3(C), in that the mid-section is elongated along the diag-

onal to capture more of the response distribution with an increase in measurement

correlations. This transformation makes intuitive sense, considering the fact that
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Figure 6.4: Performance of an ideal Bayesian observer in the presence
of measurement and stimulus correlations on a single target detection
task when the measurement noise is comparable to the external noise,
σ2

x = σ2
s (σs = σx = 15◦). (A) Variation in performance with measurement

and stimulus correlations. Performance of an optimal observer as a function of
stimulus correlations, ρs and measurement correlations, ρx on a task with N = 4
stimuli. (B) Change in performance with measurement correlations. Proportion
of correct responses as a function of measurement correlations, ρx for ρs = 0 (left)
and ρs = 0.5 (right) on the task with N = 4 stimuli. (C) Decision boundary and
measurement distributions for N = 2 stimuli and ρs = 0.5. Decision bound-
ary, dNST(x) = 0 (black) and measurement distributions corresponding to correct
inferences (orange) and incorrect inferences (purple) on target present (left) and
target absent (right) cases. The green curves (lines on left, ellipses on right) repre-
sent 2 units standard deviation of the stimulus distribution.
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with increased measurement correlations, noise simply moves the stimulus ele-

ments roughly along the diagonal and therefore the decision boundary changes

accordingly.

6.4 Summary

The performance of an ideal observer on a detection task with a single target is

greatly influenced by the joint interaction of the statistical structure of the stim-

uli, and the correlations between the observer’s measurements. The decisions are

largely affected by how different parameters that control the stimulus and mea-

surements structure are varied. Specifically, we find that the performance of the

observer is mostly unaffected at all levels of measurements correlations when the

stimulus structure is not strong and the measurement noise is weaker than the ex-

ternal noise. However, the observer always make correct decisions when distrac-

tors are homogeneous (ρs = 1) and measurements are perfectly correlated. This is

because identical distractors induces a strong statistical structure in a scene, and

strongly correlated measurements preserve this structure and help in making cor-

rect decisions. In the case of strong measurement noise which is comparable to the

external noise (σ2
x = σ2

s ), the change in performance for weak external structure is

little unpredictable and largely depends on the interaction between the stimulus

and measurement correlations. While, the observer still performs perfectly when

both distractors and measurements are maximally correlated.
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Chapter 7
Measurement correlations in a

multiple target detection task

In a detection task with a single target, the impact of measurement correlations on

the performance of an ideal Bayesian observer strongly depends on the relation

between the statistics governing the external structure and the parameters associ-

ated with the observer’s measurements. Measurement correlations have varying

influence on the decisions of the ideal observer in different parameter regimes, as

seen in Chapter 6.

Specifically, the interaction between these correlations is beneficial when the

amount of structure in visual scenes is sufficiently strong and pronounced (Fig-

ure 6.3(A)). In the case of weak measurement noise, measurement correlations

increase performance (Figure 6.3(B)) when external structure is strong. However,

in the case of strong measurement noise, the decisions of the ideal observer are
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also affected when external structure is weak (Figure 6.4(A)). Therefore, the im-

pact of measurement correlations on the accuracy of decisions heavily depends

on the amount of structure present in an external visual scene.

The external statistical structure in a target detection task is determined by

various factors: the number of stimuli, the number of targets, the mean orienta-

tion of the target and distractors, the external noise level in the distractors, and

the pairwise correlation coefficient between distractor orientations. By keeping

all other factors fixed, the amount of structure in a scene can be introduced by

varying the amount of correlations between distractor orientations; namely from

heterogeneous to homogeneous distractors (as seen in Chapter 2). However, we

can also vary any other parameter that drives the framework of a visual scene

and then study how measurement correlations could possibly interact with the

structured input to affect the performance of an ideal observer.

One possibility is to increase the number of stimuli in the task. The increased

number of stimuli and hence the distractors, could possibly help an ideal observer

in the case of homogeneous distractors; however, in general we would expect a

lower performance when the distractors are not sufficiently aligned, as in the case

of heterogeneous distractors. This is because the observer would be required to

integrate more information from additional stimuli and their respective locations

in such a case.

Rather, we consider an alternative to introduce more structure in the external

scene. We allow the possibility of more than one target in a visual display. Since
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multiple targets can be present in a display, we refer to such a task as multiple tar-

get detection task. For a given number of stimuli in the task, increasing the number

of targets certainly enhances the structure in the visual scene and can potentially

benefits the decisions of an ideal observer. However, the impact of measurement

correlations is unknown in the case of such structured inputs. We thus explore

how an optimal observer would behave in presence of stimulus and measurement

correlations on a multiple target detection task. In particular, we analyze the re-

sponses of the ideal observer in different regimes of parameters determining the

structure of the observer’s measurements and the visual scene.

Furthermore, we inspect whether measurement correlations always reinforce

the decisions of an observer or could they possibly hurt them? Could a different

objective, based on a same set of stimuli, lead to different behavioral decision?

This is an important question and we have briefly discussed it in the introduction

of Chapter 6. We examine this question in a discrimination task. The task for the

observer is to determine whether the mean orientation of the displayed stimuli is

to the left or right of the vertical. We deliberately design the discrimination task

with similar structural characteristics as that of the multiple target detection task.

Thus, the two tasks have similar structural displays but differ in the objective

for the observer. The aim is to study how measurement correlations affect the

performance of the optimal observer on both tasks and how their influence vary

with the objective of the task.

We begin this chapter with model description of the multiple target detection

task, followed by the mathematical derivation of the optimal-observer model. We
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further analyze the influence of measurement correlations on the distributions of

the observer’s responses and the resulting performance. We conclude by compar-

ing the effects of measurement correlations in the case of a discrimination task to

that of the multiple target detection task. We find that measurement correlations

have an adverse effect on the performance in the discrimination task.

7.1 Model description

The model set up for a multiple target detection task is very similar to the single

target detection task described in Sections 2.1 and 6.1. We present a set of N stim-

uli to the observer and the observer needs to infer whether a target stimulus is

present in the visual display. A target is a stimulus with a particular orientation,

denoted by sT. For simplicity, we assume sT = 0◦ and measure stimulus orien-

tations relative to that of a target. On half of the trials, one or multiple targets

are present among a set of distractors. All n targets have identical orientation. A

distractor stimulus has a non-target orientation. Again, we denote target presence

by T = 1 and absence by T = 0.

When T = 0, there are no targets and stimulus orientations are drawn from

a multivariate normal distribution described in Eq. (2.1) with mean sD = 0N =

(0, 0, · · · , 0) and covariance matrix, Σs, so that

s|T = 0 ∼ N (0N , Σs).

We again assume Σs with constant diagonal terms, σ2
s and off-diagonal terms,
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ρsσ
2
s , where the pairwise correlation coefficient, ρs determines the dependence

between orientations of the distractors.

If T = 1, then n ≥ 1 targets are present. To place the targets, we choose n out

of the N possible locations with equal probability. The set of the n target locations

is denoted by L. There are

N

n

 possible choices for this set and we denote the

collection of all possible choices of sets of target locations by L. We also write

M =

N

n

 as the cardinality of the set L.

The orientations of the remaining N − n distractors are chosen from a mul-

tivariate normal distribution with mean 0N−n and covariance matrix Σs\L of di-

mension (N − n) × (N − n). Once the locations of the targets are chosen, let

sL = (si1 , si2 , · · · , sin), il ∈ L denote the orientations of the target stimuli and

s\L = (s j1 , s j2 , · · · , s jN−n), jl /∈ L those of the distractors. We can therefore write

sL|T = 1 ∼ ∑
i∈L
δ(si) and s\L|T = 1 ∼ N (0N−n, Σs\L). (7.1)

For η > 0, we introduce the following auxiliary covariance,

(Σηs,L)i, j =



(Σs\L)i, j, if i, j /∈ L,

η, if i = j ∈ L,

0, if i ∈ L, or j ∈ L, and i 6= j,

(7.2)

and write,

s|(T = 1, L) ∼ lim
η→0+

N (0N , Σηs,L).

We note that the matrix Σ
η
s,L reduces to Σ

η
s, j defined in Eq. (6.4) in the case of a

detection task with a single target, n = 1.
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We further assume that the observer’s measurements, x = (x1, x2, · · · , xN)

are correlated so that it follows the multivariate normal distribution described in

Eq. (6.1) as

x|s ∼ N (s, Σx).

Additionally, we assume that the covariance matrix, Σx, has a similar structure

as Σs, with constant diagonal terms, σ2
x and off-diagonal terms, ρxσ

2
x . Since the

task variables are similar to the target detection task specified in Section 6.1, the

generative model remains the same as shown in Figure 6.1.

7.2 Optimal observer theory

We now derive the mathematical model for the decisions of an optimal Bayesian

observer on the task. In Sections 2.2 and 6.2, we described that the ideal observer

makes a decision based on the sign of the log-posterior ratio. Here we denote the

Bayesian decision variable by dNMT(x),

dNMT(x) = log
p(T = 1|x)
p(T = 0|x) . (7.3)

Since the optimal observer uses a uniform prior over T, we essentially compute

the log-likelihood ratio

dNMT(x) = log
p(x|T = 1)
p(x|T = 0)

.

The optimal observer needs to marginalize over the spatial location vector and

the stimulus, s, to compute the distribution of the measurements given the target
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presence variable, i.e., p(x|T). Thus, we have

dNMT(x) = log

ˆ
p(x|s)p(s|T = 1)ds

ˆ
p(x|s)p(s|T = 0)ds

.

We note that

p(s|T = 1) = ∑
L∈L

p(s|T = 1, L)p(L) =
1
M ∑

L∈L
p(s|T = 1, L).

Therefore,

p(x|T = 1) =
1
M

ˆ
p(x|s) ∑

L∈L
p(s|T = 1, L)ds

=
1
M ∑

L∈L

ˆ
p(x|s)p(s|T = 1, L)ds

=
1
M

lim
η→0+

∑
L∈L

ˆ
f (x; s, Σx) f (s; 0N , Σηs,L)ds

=
1
M ∑

L∈L
f (x; 0N , CL).

Here we have defined CL = Σx + Σ0
s,K. The above equation is obtained by apply-

ing the general rule of product and integral for multivariate normal distributions

described in Appendix B.1.2. Similarly, we define C = Σx + Σs to obtain

p(x|T = 0) =
ˆ

p(x|s)p(s|T = 0)ds

=

ˆ
f (x; s, Σx) f (s; 0N , Σs)ds

= f (x; 0N , C).

Taking the required ratio of P(x|T = 1) and P(x|T = 0) gives us

dNMT(x) = log
1
M ∑

L∈L

f (x; 0N , CL)

f (x; 0N , C)

= log

[
1
M

√
|C|
|CL| ∑

L∈L
exp

(
−1

2
xT
(

C−1
L − C−1

)
x
)]

. (7.4)
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We note that the determinant of the matrix CL does not depend on the set L, since

all matrices of this form can be obtained from each other by permuting appropri-

ate rows and columns.

We further simplify the above equation by computing the determinant and in-

verse of matrix CL. The determinant and inverse of C has already been computed

in Section 6.2.1.1. We note that the covariance matrix CL has the following form

(CL)i, j =



η+σ2
x , if i = j ∈ L,

σ2
s +σ2

x , if i = j /∈ L,

ρxσ
2
x , if either i, or j ∈ L, and i 6= j,

ρsσ
2
s + ρxσ

2
x , if i, j /∈ L, and i 6= j.

We follow the inverse and determinant computations performed in Section 6.2.1.1.

In particular, we decompose CL = AL +ULEVL. The different matrix components

in this decomposition are defined in a similar manner as seen in Section 6.2.1.1.

Specifically, E is a 2× 2 identity matrix,

(AL)k,l =



η+σ2
x (1− ρx), if k = l ∈ L,

σ2
s (1− ρs) +σ2

x (1− ρx), if k = l /∈ L,

0, otherwise ,

,
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and the columns of N × 2 matrix UL and rows of 2× N matrix VL are given by

UL(k,1)
=


σ2

s (1− ρs) +σ2
x (1− ρx), if k /∈ L,

σ2
x (1− ρx), if k ∈ L,

and UL(k,2)
= σ2

x (1− ρx), ∀ k,

VL(1,k)
=


1, if k /∈ L,

0, if k ∈ L,
and VL(2,k)

=


0, if k /∈ L,

1, if k ∈ L.

We also recall the definition of the following quantities from Eq. (6.8)

v =
1

σ2
s (1− ρs) +σ2

x (1− ρx)
, ṽ =

1
σ2

x (1− ρx)
,

V = Nv, a = ρsσ
2
s + ρxσ

2
x , β =

a
1 + aV

,

and further define

V\L = (N − n)v, q̃ = a + nρsσ
2
s ρxσ

2
x ṽ, (7.5)

r̃ = 1 + ρsσ
2
s V\L, and γ̃ = 1 + aV\L + nρxσ

2
x ṽr̃. (7.6)

Applying the Generalized Matrix Determinant Lemma and the Woodbury for-

mula (Appendix B.3), we obtain the following determinant and inverse of the

matrix CL:

|CL| =
γ̃

ṽn vN−n ,
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and

(C−1
L )i, j =



ṽ− ρxσ
2
x ṽ2 r̃
γ̃ , if i = j ∈ L,

v− v2 q̃
γ̃ , if i = j /∈ L,

−ρxσ
2
x ṽ2 r̃
γ̃ , if i, j ∈ L, and i 6= j,

− v2 q̃
γ̃ , if i, j /∈ L, and i 6= j,

−ρxσ
2
x vṽ
γ̃ , if i 6= j, i ∈ L, j /∈ L, or i 6= j, i /∈ L, j ∈ L.

As required in Eq. (7.4), we simplify√
|C|
|CL|

=

√
1 + aV
γ̃

(
ṽ
v

)n

and compute

xTC−1x = (v−βv2)
N

∑
i=1

x2
i −βv2

N

∑
i 6= j

xix j,

xTC−1
L x =

(
ṽ− ρxσ

2
x ṽ2r̃
γ̃

)
∑
i∈L

x2
i +

(
v− v2q̃

γ̃

)
∑
i/∈L

x2
i

− ρxσ
2
x ṽ2r̃
γ̃ ∑

i, j∈L
i 6= j

xix j −
2ρxσ

2
x vṽ
γ̃ ∑

i∈L
j/∈L

xix j −
v2q̃
γ̃ ∑

i, j/∈L
i 6= j

xix j.

We substitute the above expressions in Eq. (7.4) to obtain the following expression

for the optimal Bayesian decision variable on the task:
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dNMT(x) = log

 1
M

√
1 + aV
γ̃

(
ṽ
v

)n

∑
L∈L

exp

−1
2
σ2

s (1− ρs)vṽ ∑
i∈L

x2
i︸ ︷︷ ︸

I

− 1
2

(
βv2 − ρxσ

2
x ṽ2r̃
γ̃

)
∑

i, j∈L
xix j︸ ︷︷ ︸

I I

−
(
βv2 − ρxσ

2
x vṽ
γ̃

)
∑

i∈L, j/∈L
xix j︸ ︷︷ ︸

I I I

−1
2

(
βv2 − v2q̃

γ̃

)
∑

i, j/∈L
xix j︸ ︷︷ ︸

IV


 . (7.7)

The above equation describes the decision strategy of an optimal observer on the

multiple target detection task. If dNMT(x) > 0, the observer responds the target

is present, and target absent otherwise. Eq. (7.7) shows the intricate dependence

of the decision variable, dNMT(x) on several parameters governing the structure

of the task such as the total number of stimuli N, number of targets n, variance

σ2
s , and correlation ρs of the distractors’ orientations and the parameters σ2

x and

ρx determining the structure of the measurements.

7.2.1 Interpretation of the decision variable

The decision variable derived in Eq. (7.7) is a generalized form of the decision

variable computed in Eq. (6.12). Eq. (7.7) is further complex and depends in a

complicated way on different parameters that describe the structure of the stim-

ulus and the response. However, we can interpret it in a similar manner as in
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Section 6.2.3. The outer sum is over all putative sets of targets L ∈ L. The sum-

mands correspond to the evidence that the set L contains targets. Each term in

the exponent has an intuitive interpretation: (I) for the putative set of targets, L,

the first term represents the sample second moment of the potential target mea-

surements; if this term is large, the measurements are more likely to be away from

zero and hence it is less likely that the set L consists of targets; (II) the second

term can be written in terms of sample covariance between putative targets and

a smaller value of this term corresponds to an increased chance of set L being a

set of targets; (III) the third term compares the sample means of measurements in

the putative target set to those outside of it, a small value of this term provides

evidence that the set L contains targets; and (IV) the last term can be rewritten in

terms of sample covariance of the measurements corresponding to the putative

distractor set, i.e., stimuli outside of set L, if these measurements are correlated,

a large covariance would imply that this is a set of distractors, hence it is more

likely that the set L consists of targets. Again, it is difficult to provide a precise in-

terpretation of the different prefactors involved in Eq. (7.7), since they have more

complicated dependence on various parameters in the generative model of the

task.

We now analyze the impact of different statistical parameters that govern the

structure of a scene and the measurements on the performance of an ideal Bayesian

observer in the multiple target detection task. Specifically, we aim to understand

how the relationship between the parameters that determine the external struc-

ture of the visual display, namely,σ2
x and ρx, and the measurement parameters,σ2

x
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and ρx, affect the decisions of the optimal observer. Since no explicit dependence

is known among these parameters, we therefore examine a range of possibilities

here.

7.3 Analysis and results

Here we analyze the decision variable, dNMT(x) (Eq. (7.7)), in the regime of weak

measurement noise, that is, when σ2
x � σ2

s . In the case of strong measurement

noise, σ2
x � σ2

s , the noise dominates over other statistical parameters and the ob-

server only makes a guess about target presence. Therefore, we limit our analysis

in the regime of weak measurement noise and examine the impact of measure-

ment correlations on the performance of a Bayes-optimal observer.

As seen in Section 6.3.1, we let ε = σ2
x
σ2

s
and approximate Eq. (7.7) in the limit

of ε → 0. We split our analysis in the case of weak and strong external structure,

that is, when ρs < 1, and ρs ≈ 1, respectively.
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7.3.1 Weak external structure, ρs < 1

In the absence of structured visual scenes, the coefficients of the exponent terms

in Eq. (7.7) reduce to the following expressions in the limit of ε→ 0,

I : σ2
s (1− ρs)vṽ =

1
σ2

x (1− ρx)
+O(1)

I I : βv2 − ρxσ
2
x ṽ2r̃
γ̃

= − ρx

σ2
x (1− ρx)(1 + (n− 1)ρx)

+O(1)

I I I : βv2 − ρxσ
2
x vṽ
γ̃

≈ O(1)

IV : βv2 − v2q̃
γ̃
≈ O(1).

Also, the leading determinant term approximates to√
1 + aV
γ̃

(
ṽ
v

)n
≈

√
(1− ρx)(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρx)

(
σ2

s (1− ρs)

σ2
x (1− ρx)

)n

.

Therefore, we obtain the following approximation for the decision variable in the

parameter regime of σ2
x � σ2

s and ρs < 1:

dNMT(x) ≈ log

 1
M

√
(1− ρx)(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρs)

(
σ2

s (1− ρs)

σ2
x (1− ρx)

)n

× ∑
L∈L

exp

(
− 1

2σ2
x (1− ρx)

(
∑
i∈L

x2
i −

ρx

1 + (n− 1)ρx
∑

i, j∈L
xix j

))]
. (7.8)

Special case: n = 1 We note that in the case of a single target, set L has only one

element and L = {1, 2, · · · , N}. Thus, when sT = sD = 0◦, Eq. (7.8) reduces to

the Eq. (6.16), which has been examined in detail in Chapter 6.

We observe that Eq. (7.8) explicitly depends on ρx, unlike the case of a single

target in the same regime (Section 6.3.1.2). Also, these measurement correlations

204



7.3. ANALYSIS AND RESULTS

clearly influence the performance of an ideal observer, as seen in Figure 7.1(A).

The simulations were performed with N = 4 stimuli and n = 3 targets in the task.

The external noise and measurement noise were fixed at σs = 15◦ and σx = 4◦.

Since the n target stimuli have identical orientation, they are perfectly correlated.

This introduces a relation between a subset of the stimuli on half of the trials, even

when ρs = 0.

In general, for a fixed ρs, we observe in Figure 7.1(A) that the performance

increases with increasing ρx. This is because the stimuli have a strong structure

as all the targets are identically oriented and thus the distribution s|T = 1 lies on

a low-dimensional subspace. Therefore, we expect that measurement correlations

can have a significant impact in the presence of such structure. This is in addition

to the trivial increase in performance expected simply from having more targets.

As seen in Figure 7.1(A) and (B), the ideal observer takes into account mea-

surement correlations for all values of ρs, even when measurement noise is low.

This lends to an increase in performance, as ρx is increased beyond some critical

value for any ρs. This is different from the single target case (Eq. (6.16)), where the

decision variable was independent of measurement correlations when ρs < 1.

When ρs < 1, performance gradually increases with ρx. The target stimuli are a

perfectly correlated subset of the stimulus set. The measurements of these stimuli

are identical when measurement correlations are perfect. In such a case, an ideal

observer performs perfectly by detecting whether any n of the N measurements

xi are equal.
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Figure 7.1: Performance of an ideal Bayesian observer in the presence of
measurement and stimulus correlations on a multiple target detection task
when the measurement noise is weak as compared to the external noise,
σ2

x � σ2
s (σs = 15◦,σx = 4◦). (A) Variation in performance with measurement

and stimulus correlations. Performance of an optimal observer as a function of
stimulus correlations, ρs and measurement correlations, ρx on a task with N = 4
stimuli and n = 3 targets. (B) Change in performance with measurement correla-
tions. Proportion of correct responses as a function of measurement correlations,
ρx for ρs = 0 (left), and ρs = 0.5 (right) on the task with N = 4 stimuli and n = 3
targets. (C) Decision boundary and measurement distributions for N = n = 2
and ρs = 0.5. Decision boundary, dNST(x) = 0 (black) and measurement dis-
tributions corresponding to correct inferences (orange) and incorrect inferences
(purple) on target present (left) and target absent (right) cases. The green ellipses
represent 2 units standard deviation of the stimulus distribution and the axes are
measured in terms of the standard deviation,σ , which is defined byσ2 = σ2

s +σ
2
x .
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We now analyze the impact of varying amounts of measurement correlations

on the performance of the ideal observer in presence of weak external structure,

ρs < 1, as seen in Figure 7.1(A).

7.3.1.1 No measurement correlations, ρx = 0

In the absence of measurement correlations, i.e., ρx = 0, a decision is solely based

on the sample second moment about the target orientation of the measurements of

the n stimuli in the putative target set

dNMT(x) ≈ log

 1
M

√
(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρs)

(
σ2

s (1− ρs)

σ2
x

)n

× ∑
L∈L

exp

(
− 1

2σ2
x

∑
i∈L

x2
i

)]
. (7.9)

Since we have assumed the target orientation to be 0◦, this value does not appear

explicitly in the centered second moment in Eq. (7.9). If i is a target, the variance of

the measurement xi isσ2
x and if i is a distractor, the variance isσ2

s +σ
2
x . Therefore,

if a subset, L of stimuli contains targets, the centered sample second moment will

be smaller than if it does not. Hence, in the absence of measurement correlations,

the ideal observer does not take into account the relation between the measure-

ments and instead compares the stimulus orientations in the putative set of targets

to the known target orientation.
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7.3.1.2 Perfect measurement correlations, ρx → 1

On the other hand, when the measurements are structured, i.e., in the case of ρx >

0, the ideal observer computes the second moment about a point between the

target orientation and the sample mean,
1
n ∑

i∈L
xi. This can be seen by rewriting

Eq. (7.8) as

dNMT(x) ≈ log

 1
M

√
(1− ρx)(1 + (N − 1)ρs)

(1 + (N − n− 1)ρs)(1 + (n− 1)ρs)

(
σ2

s (1− ρs)

σ2
x (1− ρx)

)n

× ∑
L∈L

exp

− n
2σ2

x (1− ρx)

 1
n ∑

i∈L
x2

i −
nρx

1 + (n− 1)ρx

(
1
n ∑

i∈L
xi

)2


 .

(7.10)

Furthermore, in the limit of ρx → 1, the underlined term in Eq. (7.10) approaches

the sample variance – the sample second moment centered at the sample mean,

1
n ∑

i∈L
x2

i −
nρx

1 + (n− 1)ρx

(
1
n ∑

i∈L
xi

)2

→ EL =
1
n ∑

i∈L
x2

i −
(

1
n ∑

i∈L
xi

)2

. (7.11)

In the case of strong measurement correlations, the target stimuli in set L have ap-

proximately equal measurements. Therefore, the optimal observer computes the

sample second moment centered around the sample mean (the sample variance).

We first consider the case of target present trials, T = 1. We note that EL in

Eq. (7.11) approaches zero for a set of targets, LT and therefore, the exponential in

Eq. (7.10) becomes unity. In the event that L is a set not consisting of all targets,

EL > 0 and

∑
L∈L

exp
(
− nEL

2σ2
x (1− ρx)

)
= 1 + ∑

L∈L\LT

exp
(
− nEL

2σ2
x (1− ρx)

)
→ 1.
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The prefactor in Eq. (7.10) diverges. However, since lim
x→∞ exp(−x)xn = 0 for any

finite n, the product of the prefactor and the exponential terms (not equal to 1) still

converge to zero. Therefore, on target present trials, we obtain dNMT(x) → ∞ as

ρx → 1.

On target absent trials, T = 0, the expression EL will be greater than zero for

all sets L. Thus, dNMT(x) → −∞ in the limit of ρx → 1. Hence, regardless of

external correlations ρs, the ideal observer performs perfectly when ρx = 1.

7.3.1.3 Intermediate measurement correlations, 0 < ρx < 1

When 0 < ρx < 1, the ideal observer makes a decision by adopting an inter-

mediate strategy and computes a second moment about a point between the tar-

get orientation and the sample mean (Eq. (7.8)). Moreover, the weight on the

sample mean increases with the number of targets in set L, since the prefactor

nρx/(1 + (n− 1)ρx) grows with n for fixed ρx.

We also observe in Figure 7.1(C) that measurement correlations significantly

impact the distribution of measurements. With N = n = 2, the distribution ap-

proaches the diagonal (x1 = x2) as ρx → 1. This decreases the overlap between

the target present and absent distributions.

Therefore, with multiple targets, there is always structure in the stimulus set,

and P(s|T = 1) is always concentrated on a low-dimensional subspaces. In this

case, the structure present in the observer’s measurements can again decrease the
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overlap between the distribution of measurements and significantly impact deci-

sions and hence, the performance.

7.3.2 Strong external structure, ρs = 1

In Figure 7.1(A), we also observe that the performance steadily increases with ρx

when ρs = 1 and a perfect performance is achieved at ρs = ρx = 1. This behavior

is quite similar to the single target case seen in Figure 6.3(A). We thus expect a

similar approximation of the decision variable, dNMT(x) in this case.

In the case of homogeneous distractors, ρs = 1, we obtain the following re-

duced expressions for the different exponent terms in Eq. (7.7):

I : σ2
s (1− ρs)vṽ = 0

I I : βv2 − ρxσ
2
x ṽ2r̃
γ̃

=
1− (N − n + 1)ρx

N(1 + (n− 1)ρx)σ2
x (1− ρx)

+O(1)

I I I : βv2 − ρxσ
2
x vṽ
γ̃

=
1

Nσ2
x (1− ρx)

+O(1)

IV : βv2 − v2q̃
γ̃

=
−n− N(n− 1)ρx

N(N − n)σ2
x (1− ρx)

+O(1).

The determinant prefactor becomes√
1 + aV
γ̃

(
ṽ
v

)n
≈

√
N(1− ρx)

(N − n)(1 + (n− 1)ρx)
.

Combining the above expressions gives us the following approximated decision
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variable:

dNMT(x) ≈ log

[
1
M

√
N(1− ρx)

(N − n)(1 + (n− 1)ρx)
∑

L∈L
exp

(
−1

2
1

Nσ2
x (1− ρx)

1− (N − n + 1)ρx

(1 + (n− 1)ρx)
∑

i, j∈L
xix j + 2 ∑

i∈L, j/∈L
xix j −

n + N(n− 1)ρx

(N − n) ∑
i, j/∈L

xix j


︸ ︷︷ ︸

FL



 .

(7.12)

We note that the above equation reduces to Eq. (6.14) studied in Chapter 6 in the

case of a single target, n = 1.

It is evident from Eq. (7.12) that ρx impacts the decisions of an optimal ob-

server when external structure is predominant. When ρx = 1, the expression FL

in Eq. (7.12) becomes

FL =
n− N

n

(
∑
i∈L

xi

)2

+ 2 ∑
i∈L, j/∈L

xix j −
n + N(n− 1)

(N − n)

 ∑
i, j/∈L

xi

2

.

Therefore, the ideal observer computes the decision in this case by comparing the

sample second moment of the elements in the putative target set, L, to those not in

the set and also considering the product of the sample means of the two sets. The

measurements of the target stimuli are equal and also the distractors measure-

ments are similar when measurement correlations are perfect. Thus, on both tar-

get absent and present trials, FL converges to a finite number, but the exponential

prefactor in Eq. (7.12) diverges in the limit of ρx → 1. Therefore, dNMT(x) → +∞
on target present trials and it goes to −∞ on target absent trials. Hence, the ob-

server performs perfectly in such a case. Further, the trend in performance for any
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ρx when ρs = 1 can be explained in similar terms as seen in the case of a single

target (Section 6.3.1.1).

In summary, we found that the impact of measurement correlations on the

performance of an optimal Bayesian observer is significant with multiple targets

as compared to the case of a single target (Chapter 6). This is attributed to the

presence of more structured input and the interplay of measurement and stimulus

correlations. Thus, presence of more structured displays enhances the joint effects

of stimulus and measurement correlations.

However, the role of measurement correlations in response to the fixed input

could also depend on the actual objective of the task rather than the true structure

present in a visual scene. For instance, two different tasks can be performed with

the same visual input but the impact of measurement correlations can vary exten-

sively given the objective of the task. We consider an example of a discrimination

task in the following section to explore the possible dependence of measurement

correlations on the objective of a task.

7.4 Mean stimulus orientation discrimination task

As before, we consider that an observer is presented with N stimuli in a visual dis-

play. Stimulus orientations, denoted by s = (s1, s2, · · · , sN), are relevant features

of the task. We measure orientations relative to the vertical, which we denote by 0.
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The task for the observer is to determine whether the mean orientation of the stim-

ulus set is to the left (this is denoted by C = −1) or right (C = 1) of the vertical.

The binary variable, C represents the two classes that need to be discriminated.

Hence, this type of a task is known as a discrimination task.

Stimulus orientations are drawn from a multivariate normal distribution with

mean vector, 0N and covariance matrix, Σs, so that

s ∼ N (0N , Σs). (7.13)

We have defined the matrix Σs in Eq. (2.3). The observer makes a decision based

on the measurements of the presented stimuli, denoted by x = (x1, x2, · · · , xN).

Similar to the target detection tasks discussed in Sections 6.1 and 7.1, we assume

the measurements to be unbiased and follow multivariate normal distribution

with mean, s and covariance matrix, Σx as

x|s ∼ N (s, Σx).

We observe that the framework of the task and thus the structure of visual in-

puts is similar to the target detection tasks analyzed in Chapter 6 and here in

Section 7.1. But, we do not have any characterization of the target in this case. The

observer is only interested in determining whether C = 1 or C = −1, instead of

detecting any particular orientation of the stimuli.
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7.4.1 Inference process

An optimal Bayesian observer needs to determine whether the mean orientation

of the set of stimuli is oriented to the left or right of the vertical. We denote the

mean orientation of the set of stimuli on a trial by s̄, so that s̄ =
N

∑
i=1

si. The optimal

observer performs the computation based on the log-posterior ratio of the mean

stimulus orientation being left or right, given the measurements. We denote the

Bayesian decision variable on the task by dMD(x) and is given by

dMD(x) = log
p(C = 1|x)

p(C = −1|x) = log
p(s̄ > 0|x)
p(s̄ < 0|x)

= log
p(x|s̄ > 0)
p(x|s̄ < 0)

+ log
p(s̄ > 0)
p(s̄ < 0)

. (7.14)

We denote the observer’s MAP estimate of C by Ĉ. When the decision variable,

dMD(x) > 0, the observer infers Ĉ = 1 and responds the mean stimulus orienta-

tion to the right of the vertical, that is, s̄ > 0. If dMD(x) < 0, the observer reports

Ĉ = −1, and s̄ < 0.

To compute the density function p(x|C) in Eq. (7.14), we marginalize the ob-

server’s information over the variable s and further apply Bayes’ rule to obtain

p(x|s̄ > 0) =

ˆ
p(x|s)p(s|s̄ > 0)ds

=

ˆ
p(x|s)p(s̄ > 0|s) p(s)

p(s̄ > 0)
ds

=
1

p(s̄ > 0)

ˆ
s̄>0

p(x|s)p(s)ds

=
1

p(s̄ > 0)

ˆ
s̄>0

f (x; s, Σx) f (s; 0N , Σs)ds

=
kx

p(s̄ > 0)

ˆ
s̄>0

f
(

s;
(

I + ΣxΣ
−1
s

)−1
x,
(
Σ−1

s + Σ−1
x

)−1
)

ds.
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Appendix Eq. (B.3) is used above to simplify the product of two multivariate

normal distributions and here kx = 1√
2π |Σs+Σx|

exp
(
− 1

2 xT(Σs + Σx)−1x
)

is a nor-

malization constant. Similarly, we compute p(x|s̄ < 0) and obtain the following

expression for the Bayesian decision variable, dMD(x):

dMD(x) = log


ˆ

s̄>0
f
(

s;
(

I + ΣxΣ
−1
s

)−1
x,
(
Σ−1

s + Σ−1
x

)−1
)

ds
ˆ

s̄<0
f
(

s;
(

I + ΣxΣ
−1
s

)−1
x,
(
Σ−1

s + Σ−1
x

)−1
)

ds

 . (7.15)

The above equation characterizes the decisions of the ideal observer on the task

to discriminate whether the mean orientation of the presented stimuli is to the

left or right of the vertical. Though the expression is not explicit, it depends on

various parameters that govern the external structure of a visual scene and those

that determine the structure in the observer’s measurements. For instance, the

total number of stimuli N, the variance and correlation of stimuli,σ2
s and ρs shape

the structure of the input stimuli, while σ2
x and ρx determine the structure in the

measurements.

We find that it is difficult to further simplify Eq. (7.15) analytically and there-

fore, we analyze the decisions of the ideal observer by performing numerical sim-

ulations. We present our simulation results below.

7.4.2 Results

We observe that the structure of input stimulus in the discrimination task is simi-

lar to the multiple target detection task discussed in Section 7.1. We are interested
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in determining how the effects of measurement correlations change with the ob-

jective of a task. We thus analyze the impact of measurement correlations on the

performance of an optimal observer in both tasks.

For comparison purposes, we consider the simulations of the mean stimulus

orientation discrimination task with N = 4 stimuli, σs = 15◦ and σx = 4◦. Fig-

ure 7.2(A) shows the performance of an optimal Bayesian observer on the discrim-

ination task as a function of ρx when ρs = 0.5.
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Figure 7.2: Performance of an ideal Bayesian observer on the mean stimulus
orientation discrimination task and multiple target detection task with N = 4
stimuli,σs = 15◦,σx = 4◦, and ρs = 0.5. (A) Mean stimulus orientation discrim-
ination task. Performance of an optimal Bayesian observer as a function of mea-
surement correlations, ρx on the mean stimulus orientation discrimination task.
(B) Multiple target detection task. Similar to (A) in a multiple target detection
task with n = 2.

We note that the performance gradually decreases as ρx increases. This is in

contrast to the trend in performance on a multiple target detection task in Fig-

ure 7.2(B). The increasing measurement correlations improve the performance of
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the ideal observer on the multiple target detection task and indeed perfect per-

formance is possible when responses are perfectly correlated. However, measure-

ment correlations have a negative impact on the performance when the task is to

discriminate the mean stimulus orientation, instead of finding a target in similarly

structured visual scenes.

Though the input is structured in a similar way in both cases, the observer

needs to use different strategies to make decisions on the two tasks. In the dis-

crimination task, the observer is required to integrate information from different

sources; whereas the detection task requires extracting information about targets

buried in a sea of distractors. Intuitively, a choice between two possibilities needs

to be made based on the measurement of a set of stimuli. Each choice corresponds

to a distribution of measurements. The difficulty of the task depends on how

much the degree of overlap between these two distributions. The higher the over-

lap, the more difficult it is to tell which distribution a measurement belongs to,

and the more difficult the decision. External structure, as well as structured noise

in the measurements impacts the overlap between these distributions. Therefore,

performance of an ideal observer depends not only on the strength, but also on the

structure of measurement noise [6, 4]. Thus, the particulars of the task, the struc-

ture of the stimulus, as well as the strength and structure of the measurements

jointly determine performance.

Hence, the role of measurement correlations can be subtle, and depends on

the nature of the task. We thus have examined their impact on detecting a single

(Chapter 6) and multiple targets among a group of distractors that have varying
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degrees of pairwise correlations in their orientations.
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Chapter 8
Discussion

Understanding how correlations between stimuli and measurements affect our

decisions is important to understand how our visual perceptual system responds

to structured input along with the structured measurements. Here we presented a

thorough analysis of an experimental study designed to investigate how humans

make decisions in response to stimuli that have varying degrees of structure on a

visual search task. Further, we theoretically analyzed the joint effects of stimulus

and measurement correlations on the performance of an ideal observer in a family

of visual search tasks. Below, we discuss our findings and their limitations along

with potential generalizations.
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Stimulus correlations in visual search

Several recent studies found that humans perform near optimally on visual search

tasks [94, 151, 98, 99]. That is, humans are capable of making best possible de-

cisions while searching for a predefined target among non-relevant distractors.

These studies only used two types of distractors - homogeneous (identical) and

heterogeneous (independent). Moreover, the orientations of the homogeneous

distractors were completely predictable (same across trials) except in [99]. Maz-

yar et al. [99] were the first to distinguish homogeneity from predictability. They

manipulated the statistics of the distractors by using trial-to-trial variability in ho-

mogeneous displays. The distractors were still identical to each other, but the ori-

entation of the distractor was randomly chosen across trials. Regardless of intro-

ducing variability across trials in homogeneous displays and changing the degree

of heterogeneity, their experiments were still focused on two extreme possibilities

of distractors - with identical or independent random orientations.

Visual stimuli in natural scenes can be correlated to different extents with each

other, therefore, it is important to understand how our visual decisions are af-

fected by inputs that have intermediate correlations. In our work, we thus ex-

plored the intermediate regime of correlations between distractors. Using a target

detection experiment, we examined whether humans take into account stimulus

(distractors) correlations in visual search. We varied the amount of correlations

between stimuli across different experimental sessions. Different correlations in-

troduced varying amount of structure in visual displays - from none (uncorrelated
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distractors), to mid-level (partially correlated distractors), to high-level (perfectly

correlated distractors). We obtained mixed results based on the analysis of sub-

jects’ data and model selection. Due to individual differences, we did not obtain

a clear presentation of how subjects inferred different correlation strengths. How-

ever, based on the assumptions of our best fitted models on different criteria, we

found that subjects accounted for stimulus correlations in their responses, though,

they were suboptimal in inferring the true correlation strength of distractor orien-

tations in an experimental session.

Specifically, the favorable model based on Bayesian information criterion sug-

gests that perhaps subjects were unable to distinguish the partially correlated

conditions and they used a constant correlation strength to make decisions on

those experimental sessions. While, subjects inferred a near-to-optimal correlation

strength when distractors were perfectly correlated. This indicates that probably

subjects use different inference processes when making decisions about homo-

geneous displays as compared to the case of partially structured displays. Per-

haps humans perceive completely structured input differently while they may

be unable to make a clear distinction between inputs having partial correlations

and those having no structure. Further, we found that the distribution of encod-

ing precision was dependent on the correlation strength used across experimental

sessions. This dependence is difficult to explain, but suggests that possibly sub-

jects encode stimuli with different level of precision when they are highly struc-

tured and differently when the statistical structure in a scene is relatively weak.

A similar observation about different dependence of precision in homogeneous
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and heterogeneous conditions was also made by Mazyar et al. [99]; however, they

analyzed the set-size effects in visual search task.

The selected model based on Akaike information criterion suggests that sub-

jects treated each experimental condition differently, but suboptimally. They in-

correctly inferred the true correlation strength used to generate stimuli in an ex-

perimental session. Based on the parameter estimates of this model and experi-

mentally obtained psychometric curves, we concluded that possibly subjects be-

have similarly in the conditions when distractors have intermediate strengths of

correlations and they perform distinctly only in the case of identical distractors.

We note that these findings depend on the choice of models and the model

comparison tools. It is always possible that there are better models and better ex-

planations. For instance, we assumed that subjects correctly inferred the standard

deviation of distractor orientations in the experiment. It might be possible that

subjects used some other possible values of this standard deviation to make deci-

sions. In that case, we need to use plausible assumptions on this parameter in our

models and test whether subjects were able to infer this value correctly. It is also

possible that subjects did not use any information about stimulus correlations or

other parameters in the generative model of the task. Instead, they used alterna-

tive suboptimal strategies such as threshold criteria [94] to make their decisions.

Besides these limitations about model assumptions, we are also limited by finite

size of our data set. Our analysis and conclusions are based on the experimental

data from a small number of participants. Therefore, individual subject differ-

ences are prominent in average model comparisons and lead to mixed results.
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There are several other possibilities that exist and could perhaps provide a bet-

ter explanation for the data. However, due to computational and time constraints,

not every possibility can be tested. We tested a variety of models and these en-

compass a large range of possible assumptions about subjects’ behavior. Thus, it

is more likely that these models are sufficient to explain the decisions of human

subjects on the experiment.

We examined a general question in our study. It is not only relevant to visual

search studies, but to several other psychophysical studies in general. Different

psychophysical experiments can be used to address the same question. For in-

stance, the effects of structured environment on human decisions can be studied

in a delayed estimation task [150]. Such a task could be simpler to perform as

compared to the target detection task. In addition, a wide variety of stimuli are

structured and correlated such as audio signals and odors. It is important to un-

derstand how brain integrates structured inputs to extract relevant information

about the state of the world. Our work is a little step in this direction and we hope

that our findings may have more general implications.
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Interplay between stimulus and measurement correla-

tions

Several theoretical and experimental studies have modeled decision processes by

which the brain converts sensory measurements of a set of stimuli into a judge-

ment about the world. But, many of them relied on stereotypical assumptions

about the measurements being independent (across stimuli) and normally dis-

tributed [94, 98, 99, 151]. We extended our work here by focusing on the effects

of violation of the assumption of independent measurements on performance in

categorical, global perceptual judgements. It has been found that neural correla-

tions can extend to long distances in visual cortex [39, 31], which suggests that

the sensory measurements can be strongly correlated [124, 30]. But, the effects of

measurement correlations cannot be studied in isolation; they need to be paired

with the statistical structure of stimuli [99]. Therefore, in this work, we examined

the joint influence of stimulus and measurement correlations on the performance

of an ideal observer in a family of target detection tasks.

We found that the relation between stimulus and measurement correlations

play a significant role in the decision-making strategy of an ideal Bayesian ob-

server. Measurement correlations help in preserving the statistical structure of the

stimuli on a multiple target detection task and hence enhance the performance;

however, they have no effect on decisions in the case of a single target. This in-

dicates that perhaps measurement correlations only play a role when sufficiently

strong external structure is present in visual scenes. In the case of weak external
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structure, visual displays are only partially structured and correlations between

sensory measurements are inefficient in preserving those weak structures. We ob-

served that the ideal observer always performs perfectly on both single and mul-

tiple target detection tasks when the distractors are homogeneous and measure-

ments are perfectly correlated. Such an observation clearly reflects the significance

of interaction between both correlations and the importance of measurement cor-

relations in preserving the external statistical structure to improve the accuracy of

decisions.

We also found that the influence of stimulus and measurement correlations

depends on the relation between the external stimulus and measurement noise.

In the regime of strong external noise as compared to the measurement noise, the

trend in performance is easier to interpret in a single target detection task. While

in the case of dominating measurement noise, we did not see a clear trend and

it was relatively difficult to understand how both correlations interact to increase

the performance at a particular value, but not at others.

Apart from the dependence on various parameters that control the statistical

structure of visual displays, we found that influence of measurement correlations

can also depend on the nature or objective of a task. Measurement correlations can

have varying effects in response to same structured stimuli but with different task

objectives. We observed that while these correlations enhance the performance

of the ideal observer on a multiple target detection task, they negatively impact

the decisions on a discrimination task. The statistical structure of visual scenes

in both tasks were similar, but the observer was required to make two different
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decisions - finding a predefined target among distractors and judging whether

mean stimulus orientation of a set of stimuli orients to the left or right of vertical.

This finding suggests that the role of measurement correlations can be subtle and

the nature of the task along with the structure of stimulus jointly determine the

influence of these correlations on performance of the observer in visual perceptual

tasks.

We understand that our findings are limited to perceptual decisions in visual

search tasks while the interaction between stimulus and measurement correla-

tions can have a variety of other possible effects on our perceptual system. There-

fore, it is important to understand how these correlations jointly interact, and gov-

ern our decisions. Further work needs to be done to identify the suitable param-

eter regimes where the effects of both these correlations are significant and can

strongly impact our decision-making processes.
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Appendix A
Notation table

Symbol Description
N (µ,σ2) a one-dimensional normal distribution with mean µ and

variance σ2

f (z;µ,σ2) a one-dimensional normal density function of variable, z
with mean µ and variance, σ2

N (µ, Σ) an N-dimensional multivariate normal distribution with
N-dimensional mean vectorµ and N×N covariance ma-
trix Σ

f (z;µ, Σ) an N-dimensional normal density function of variable, z
with mean vector, µ and covariance, Σ;

1√
(2π)N |Σ|

exp
(
− 1

2(z−µ)TΣ−1(z−µ)
)

z ∼ N (µ, Σ) a random variable z having a normal distribution with
probability density function, f (z;µ, Σ)

z|Y ∼ N (µ, Σ) a random variable z conditioned on Y having a normal
distribution with probability density function, f (z;µ, Σ)

0N an N-dimensional zero vector, (0, 0, · · · , 0)

Table A.1: Continued on next page
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Table A.1: Continued from previous page

Symbol Description
1 j an N-dimensional vector with jth entry as 1 and rest ze-

ros; (0, 0, · · · , 0, 1, 0, · · · , 0)
z\ j (z1, z2, · · · , z j−1, z j+1, · · · , zN)

Σ\ j an N × N matrix obtained by removing jth row and col-
umn of matrix Σ

|A| determinant of the matrix A

Table A.1: Mathematical Notations. Description of the mathematical notations
used in the text.
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Appendix B
Some mathematical results

We present some known mathematical results and theorems here that are used in

the main text to derive several results.

B.1 Product and integral of normal distributions

The product of m (m ≥ 2) normal distributions over a single variable is a normal

distribution. The integral of such a product distribution is analytically tractable.

We list below few relevant results about the product and integral of normal distri-

butions.
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B.1. PRODUCT AND INTEGRAL OF NORMAL DISTRIBUTIONS

B.1.1 Univariate normal distributions

Consider two Gaussian probability distributions over a single random variable,

z. Assume that the means of the two distributions are denoted by µ1 and µ2;

and variances as σ2
1 and σ2

2 . The product of these two probability distributions

is a normal distribution and the (normalized) probability density function of the

resulting distribution can be computed as

f (z;µ1,σ2
1 ) · f (z;µ2,σ2

2 ) = f (µ1;µ2,σ2
1 +σ2

2 ) f

z;

µ1
σ2

1
+ µ2
σ2

2
1
σ2

1
+ 1
σ2

2

,
1

1
σ2

1
+ 1
σ2

2

 (B.1)

= kc f (z;µc,σ2
c ).

In general, the product of m such one-dimensional normal distributions over the

same variable z is also a normal distribution. If the mean of the ith distribution is

denoted by µi and the variance by σ2
i , then the probability density function of the

product of m such normal distributions is given by [93]

m

∏
i=1

f (z;µi,σ2
i ) = cp f

z;

m

∑
i=1
µi

m

∑
i=1

1
σ2

i

,
1

m

∑
i=1

1
σ2

i

 , (B.2)

where cp =
1(

m

∏
i=1
σi

)√
m

∑
i=1

1
σ2

i

exp

−
1
2


m

∑
i=1

µ2
i
σ2

i
−

(
m

∑
i=1

µi

σ2
i

)2

m

∑
i=1

1
σ2

i



 is a normaliza-

tion constant.

We now describe the results for the product and integral of the resulting prod-

uct in the case of multivariate normal distributions.
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B.1. PRODUCT AND INTEGRAL OF NORMAL DISTRIBUTIONS

B.1.2 Multivariate normal distributions

Consider two N-dimensional multivariate normal distributions in a single ran-

dom variable, z with mean vectorsµ1 andµ2; and covariance matrices, Σ1 and Σ2.

Given that the covariance matrices are nonsingular, the product of these two N-

dimensional multivariate normal distributions in the random variable z is another

(unnormalized) N-dimensional multivariate normal distribution [2, 115] given by

f (z;µ1, Σ1) · f (z;µ2, Σ2) = kp f (z;µp, Σp), (B.3)

with

Σp = (Σ−1
1 + Σ−1

2 )−1, µp = Σp(Σ
−1
1 µ1 + Σ−1

2 µ2), and

kp = |2πΣ1Σ2Σ
−1
p |−

1
2 exp

(
−1

2
(µ1 −µ2)

TΣ−1
1 ΣpΣ

−1
2 (µ1 −µ2)

)
= |2π(Σ1 + Σ2)|−

1
2 exp

(
−1

2
(µ1 −µ2)

T(Σ1 + Σ2)
−1(µ1 −µ2)

)
.

In the case of one-dimensional normal distributions, Eq. (B.3) reduces to Eq. (B.1)

with kp reducing to kc = f (µ1;µ2,σ2
1 +σ2

2 ).

Further, since
´

f (z;µ1, Σ1)dz = 1, the above results for the product of normal

distributions implies that

N-dimensional:
ˆ
RN

f (z;µ1, Σ1) · f (z;µ2, Σ2) dz =

ˆ
RN

kp f (z;µp, Σp)dz = kp

one-dimensional:
ˆ
R

f (z;µ1,σ2
1 ) · f (z;µ2,σ2

2 ) dz =

ˆ
R

kc f (z;µc,σ2
c )dz = kc.

(B.4)
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B.2. DETERMINANT AND INVERSE OF A RANK-1 MATRIX

B.2 Determinant and inverse of a rank-1 matrix

The determinant of a rank-1 matrix can be computed using the following matrix

determinant lemma [64, 25].

Lemma 1 (Matrix Determinant Lemma). Suppose A is an invertible square matrix,

and u, v are column vectors. Then

|A + uvT| = (1 + vTA−1u) |A|.

Here uvT is the outer product of two vectors u, and v.

Further, the inverse of a rank-1 matrix can be obtained using the Sherman-

Morrison formula [38, 58, 138, 9, 59, 102, 118]. This is a special case of the general-

ized Woodbury formula given in Theorem 2.

Theorem 1 (Sherman-Morrison formula). Suppose A is an invertible square matrix,

and u, v are vectors. Assume that 1 + vTA−1u 6= 0. Then

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Here uvT is the outer product of two vectors u, and v.

B.3 Determinant and inverse of a rank-k matrix

We now present the relevant general theorems for computing the determinant and

inverse of a rank-k matrix.
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B.3. DETERMINANT AND INVERSE OF A RANK-K MATRIX

Lemma 2 (Generalized Matrix Determinant Lemma). Suppose A is an invertible

n× n matrix, U, V are n×m matrices, and W is an invertible m×m matrix. Then

|A + UWVT| = |W−1 + VTA−1U||W||A|.

The inverse of a rank-k matrix can be computed using the following general-

ized Woodbury matrix identity [163, 59, 66].

Theorem 2 (Sherman-Morrison Woodbury formula or Woodbury matrix identity).

Suppose A is an invertible n × n matrix, U, W, and V are n × m, m × m, and m × n

matrices. Then

(A + UWV)−1 = A−1 −A−1U
(

W−1 + VA−1U
)−1

VA−1.
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Appendix C
Gabor Filter

A Gabor filter is a linear filter having frequency and orientation similar to that of

human visual system, and is obtained by multiplication of a sinusoidal wave with

Gaussian kernel function [45, 104]. It can be used as a band-pass filter for unidi-

mensional signals (e.g. speech). The filter has a real and imaginary component

given by

g(x, y; λ,θ,ψ,σ ,γ) = exp
(
−x′2 +γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ψ

)
,

and

g(x, y; λ,θ,ψ,σ ,γ) = exp
(
−x′2 +γ2y′2

2σ2

)
sin
(

2π
x′

λ
+ψ

)
.

Here x′ = x cosθ + y sinθ and y′ = −x sinθ + y cosθ. In the above equations,

λ represents the wavelength of the sinusoidal wave, θ is the angle of the normal

to the parallel stripes of a Gabor function, ψ is the phase offset, σ is the standard

deviation of the Gaussian envelope, and γ denotes the spatial aspect ratio and

describes the ellipticity of the support of the Gabor function.
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Experimental studies have shown that simple cells in human visual system can

be modeled by Gabor functions [33, 70]. Thus, Gabor filters are extensively used

as stimuli in psychophysical studies. An example of a Gabor patch is shown in

Figure 2.2(A).
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structured environments. In preparation, 2013.

[18] H.S. Bhat and N. Kumar. On the derivation of the Bayesian informa-
tion criterion. School of Natural Sciences, University of California. http:
//nscs00.ucmerced.edu/~nkumar4/BhatKumarBIC.pdf, 2010.

[19] C.M. Bishop and N.M. Nasrabadi. Pattern recognition and machine learning,
volume 1. Springer, New York, 2006.

[20] G.E.P. Box. Evolutionary operation: A method for increasing industrial pro-
ductivity. Applied Statistics, 6(2):81–101, 1957.

[21] H. Bozdogan. Model selection and Akaike’s information criterion (AIC):
The general theory and its analytical extensions. Psychometrika, 52(3):345–
370, 1987.

[22] H. Bozdogan. Akaike’s information criterion and recent developments in in-
formation complexity. Journal of Mathematical Psychology, 44(1):62–91, 2000.

237

http://nscs00.ucmerced.edu/~nkumar4/BhatKumarBIC.pdf
http://nscs00.ucmerced.edu/~nkumar4/BhatKumarBIC.pdf


BIBLIOGRAPHY

[23] T.F. Brady and J.B. Tenenbaum. Encoding higher-order structure in visual
working memory: A probabilistic model. Proceedings of the 32nd Annual
Conference of the Cognitive Science Society, pages 411–416, 2010.

[24] D.H. Brainard. The psychophysics toolbox. Spatial Vision, 10(4):433–436,
1997.

[25] M. Brookes. The matrix reference manual. http://www.ee.imperial.ac.

uk/hp/staff/dmb/matrix/intro.html, 2011.

[26] V. Bruce. Visual perception: Physiology, psychology, and ecology. Psychology
Press, 2003.

[27] K.P. Burnham and D.R. Anderson. Multimodel inference understanding
AIC and BIC in model selection. Sociological Methods & Research, 33(2):261–
304, 2004.

[28] S. Carroll, M. Bhardwaj, W.J. Ma, and K. Josić. Visual decisions in presence
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[123] R. Rosenbaum and K. Josić. Mechanisms that modulate the transfer of spik-
ing correlations. Neural Computation, 23(5):1261–1305, 2011.

[124] R. Rosenbaum, J. Trousdale, and Krešimir Josić. Pooling and correlated neu-
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