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Abstract

The purpose of this paper is to present the density of a task as a heuristic to schedule real-time tasks.
The density of a task is defined as the ratio between the computation time of the task and the minimum
of its relative deadline and period. We propose the Highest Task Density First (HTDF) algorithm to
schedule tasks in real-time systems. HTDF is a dynamic priority scheduling algorithm that selects the
task with the highest task density relative to the earliest deadline to guarantee that all tasks meet their
deadlines. We present the feasibility analysis of the proposed algorithm and we compare its performance
against the Earliest Deadline First (EDF) scheduling algorithm using as dependent variables the number
of context switches and the number of preemptions. We generate 16 test files (with 100 task sets per file)
using as independent variables: (a) Utilization (from 70% to 100%), (b) Number of tasks per task set
(from 4 to 10). We also test our algorithm with a real test case task set, derived from the NASA X-38
Crew Return Vehicle avionics, using WindRiver Workbench 3.3 to calculate the execution time of the
scheduler to compare its performance against EDF. The results show that: (a) HTDF is able to minimize
the number of context switches and the number of preemptions when compared against EDF and; (b)
HTDF performance in terms of the execution time of the scheduler is similar to EDF for the studied test
case.
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per task set (from 4 to 10). We also test our algorithm with a real test case task set, derived from the NASA X-38
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I. MOTIVATION

Rincon and Cheng [1] [2] proposed the mathematical background for using information theory principles to
schedule real-time tasks (based on the work proposed by Shannon [3]). A preliminary analysis of performance
showed that the execution time of our scheduling solution based on information theory was higher than EDF
because of the increase in the computational complexity due to the use of the logarithm function to calculate
parameters based on information theory.

After further analysis of our study about using information theory in real-time systems, we found that the proposed
parameters are related to the density of the task (TDi = ci/min(di, pi)). Therefore, to minimize the computation
complexity of the scheduling solution we decided to simplify our approach by using the density of a task as a
parameter to schedule real-time tasks.

EDF is a dynamic priority algorithm that uses the deadlines of the tasks to assign task priorities. This research
aims to show that by using the density of the tasks as a parameter to schedule real-time tasks, we can minimize the
number of context switches and the number of preemptions without increasing the execution time of the scheduler.
Our goal is to show that the information from the computation time of each task provided by its density can be
used to outperform EDF while using similar resources (CPU time).

This research focuses on a uni-processor environment using two scenarios: (a) synthetic task sets with periodic,
independent, and synchronous release tasks with implicit deadlines to measure the performance of the studied
algorithms in terms of the number of preemptions and number of context switches and; (b) task sets based on
the X-38 avionics [4] with non-implicit deadlines and precedence constraints to measure the execution time of the
scheduler and to corroborate the behavior of the studied algorithms considering the number of preemptions and the
number of context switches.

Our goal in this paper is to show that a dynamic task density-based parameter can be used to schedule tasks in real-
time systems. Using the computation time implicit in the density of the task, this new parameter provides additional
information for the scheduler to generate a feasible solution with similar performance in terms of execution time
than deadline-based scheduling algorithms while minimizing the number of preemptions and context switches.
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2

The contributions of this paper are:
• Presenting the design, feasibility analysis, and implementation of the HTDF algorithm.
• Comparing the performance of the HTDF algorithm against EDF using the number of context switches, the
number of preemptions, and the execution time of the scheduler as dependent variables.

The rest of the paper is organized as follows. In the next section, we describe the related work for the studied
problem. In section 3, we present the heuristic based on the density of the task as well as the design, feasibility
analysis, and implementation of the proposed scheduling algorithm. Section 4 presents the performance comparison
between HTDF and EDF scheduling algorithms. We give our conclusions and future work in section 5.

II. RELATED WORKS

In this section, we present previous research which used the density of the tasks to solve different scheduling
problems in real-time systems. These papers aim to show that the density of the task can be used to achieve a
different solution to the studied problem while improving the scheduler’s performance.

Aldarmi and Burns [5] in their study Dynamic Value-Density For Scheduling Real-Time Systems present a
value-based scheduling heuristic that combines the tasks’ values with some of the tasks’ dynamic attributes (tasks’
remaining execution time), in order to derive dynamic scheduling priorities. Their research focuses on soft real-
time task scheduling in a uni-processor environment with the following assumptions: (a) All tasks are aperiodic;
(b) Tasks are independent of each other, excluding contention for CPU access; and (c) Scheduling is preemptive.
They concluded that the proposed parameter (Dynamic Timeliness Density) is an effective CPU scheduling scheme,
and it is more suitable than the traditional Static Value Density and/or Earliest Deadline First, to operate under all
operating loads. This research shows that a task density based parameter can outperform the traditional real-time
system scheduling algorithms under certain conditions.

Liu et. al. [6] present a new scheduling algorithm for real-time service-oriented problems (real-time services over
the distributed computing infrastructure). Their solution uses two parameters (a profit utility function and a penalty
utility function) based on the density of a task. Their results show that the proposed algorithm can outperform the
current scheduling algorithm used to solve the real-time service-oriented problems.

Chapter 7 of Fisher [7] work proposes the Partitioned Scheduling and Schedulability Analysis of Sporadic Task
Systems, presenting a preemptive multiprocessor scheduling of sporadic real-time systems under the partitioned
paradigm. He implements a partitioning solution based on the maximum job density and demand-based load metrics
to reduce the multiprocessor scheduling problem to a series of uni-processor problems. He shows that the demand-
based load and maximum job density metrics may be exactly computed in pseudo-polynomial time for general
task systems and approximated in polynomial time for sporadic task systems. We will use these findings as the
foundation for our future solution based on the density of a task to schedule real-time tasks in a multiprocessor
environment.

The researchers from these previous studies used the additional information provided by the density of the task to
present a new approach to solve the studied scheduling problem on both uni-processor and multiprocessor platforms.
Aldarmi [5] showed that the computation time provides the information needed by the scheduler to minimize the
number of preemptions.

Other works like [8], [9], [10] and [11] use different variations of the density of a task as a heuristic to solve
different problems in real-time systems.

In our research, we propose a different approach based on the results of our work related to information theory
principles and real-time systems scheduling to present a new heuristic that can be used in both uni-processors and
multiprocessors platforms.

III. TASK DENSITY AND THE HIGHEST TASK DENSITY FIRST ALGORITHM

The density of a task (TDi) is defined by the term ci/min(di, pi) [12], where task i has a release time = ri,
computation time = ci, deadline = di, period = pi, the hyper-period (hperiod) of the system = least common
multiple of the periods, and the utilization of the task set equal to (U =

∑m
i=1 ci/pi) [13],

The heuristic that we use to assign the priority of the tasks is represented by the minimum amount of task density
that must be contained in a studied time interval. This interval is represented by the closest deadline that has to be
met in a scheduling problem based on the current scheduling time t.
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The task density per studied interval (TDi,t) is equal to:
TDi,t = ci/min(di, pi) * min(d, p)t / min(di, pi)
where min(d, p)t is the closest deadline to the scheduling time t.
Our approach uses the information provided by the computation time implicit in the density of the tasks to

improve the performance of our solution while using the same time as EDF. For a task set with two (one-instance)
tasks represented by the notation: Ji=(ri,ci,di), if J1 = (0,1,3) and J2=(0,2,4), then (TD1,3) will be equal to 0.333
and (TD2,3) = 0.375, therefore our scheduler will run J2 first and then J1 even though J1 has the earliest deadline.
Because of the information provided by TDi,t our algorithm knows that: (a) both J1 and J2 can be scheduled by
t=3; and (b) there is no need to preempt J2.

A. HTDF algorithm design

The HTDF algorithm uses the task density per studied interval (TDi,t) as a parameter to assign the priorities of
the tasks. At each scheduling point, the scheduler will select the tasks with the highest (TDi,t). Our algorithm is
a dynamic priority solution because it updates the parameters of the tasks (ci, di) before calculating their (TDi,t).

To minimize the number of context switches and the number of preemptions, we propose to use an event-driven
method based on the density of a task to the improve the performance of the algorithm by adding a decision point
to the normal scheduling points (a new task arrives, a running task ends) using the following criteria:

1) Select the task with the task density for the studied interval (TDi,t).
2) Select the next scheduling point based on:

If the computation time of the selected task (ci) is less than min(d, p)t -
∑m,∀k 6=i

k=1 dck ∗ dt/dke, then:
the next scheduling point is the current time plus ci.
Else, the next scheduling point is the current time plus min(d, p)t -

∑m,∀k 6=i
k=1 dck ∗ dt/dke.

Based on these additional criteria to calculate the next scheduling point, we present the design of the HTDF
scheduling algorithm (See Algorithm 1).

B. Feasibility Analysis

Based on the design of HTDF in terms of the event-driven method to calculate the next scheduling point and
taking into consideration the highest task density value based on the studied interval, we present the following
mathematical analysis to show the feasibility of HTDF:

Assuming that we have a task set S with implicit deadlines and U =
∑m

i=1(ci/di) ≤ 1. If S is not schedulable
by HTDF, this means that for any deadline di, the sum of the computation time of all the scheduled tasks for the
studied interval must be greater than the amount of time represented by this interval (di).

Mathematically, we have:
ci +

∑m,∀k 6=i
k=1 (ck ∗ Instancesk,t) > di

where Instancesk,t = TDk,t / TDk Then:
Instancesk,t = min(d, p)t/dk
ci +

∑m,∀k 6=i
k=1 (ck∗(min(d, p)t/dk)) > di,

considering that: min(d, p)t = di, we have:
ci + di ∗

∑m,∀k 6=i
k=1 (ck/dk) > di,

and because:
∑m,∀k 6=i

k=1 (ck/dk) = U − ci/di, we have:
ci + di ∗ (U − ci/di) > di
di ∗ (U − ci/di) > di − ci
(U − ci/di) > (di − ci)/di = (U − ci/di) > 1− ci/di, then
U > 1
This result shows that task set S is not schedulable by HTDF only if U of the studied task set is greater than

100%.
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Algorithm 1 Highest Task Density First scheduling algorithm (HTDF)
Input: Task set S
Output: Scheduling Diagram

1: schedulingTime=0
2: m=SIZE(S)
3: for i=1 ; i ≤ m do
4: initialize ri, ci, di, pi
5: end for
6: repeat
7: for i=1 ; i ≤ m do
8: TDi,t = ci/min(di, pi) * min(d, p)t / min(di, pi).
9: end for

10: HTD={max(TDi,t(S)) | 1 ≤ i ≤ m}
11: if SIZE(HTD) = 1 then
12: SelectedTask = HTD(1)
13: else
14: if CurrentRunningTask ∈ HTD then
15: SelectedTask=CurrentRunningTask
16: else
17: SelectedTask=LowPID(HTD)
18: end if
19: end if
20: TRemTask=

∑m,∀k 6=i
k=1 dck ∗ dt/dke

21: if ci < (min(d, p)t - TRemTask) then
22: NextSchedPoint=ci
23: else
24: NextSchedPoint=(min(d, p)t - TRemTask)
25: end if
26: schedulingTime=schedulingTime+NextSchedPoint
27: for i=1 ; i ≤ m do
28: di=di - NextSchedPoint
29: pi=pi - NextSchedPoint
30: if i = SelectedTask then
31: ci=ci - NextSchedPoint
32: end if
33: if di = 0 and ci > 0 then
34: Print task i missed its deadline at schedulingT ime
35: exit
36: end if
37: if pi = 0 then
38: initialize ri, ci, di, pi
39: end if
40: end for
41: until schedulingTime = hperiod
42: Print Scheduling Diagram

C. Executing the HTDF algorithm

Given the following example (with implicit deadlines) consisting of 3 tasks (J1, J2 and J3) with the following
parameters (ri, ci, di, ti):
J1= (0,1,4,4), J2= (0,2,6,6), J3= (0,2,6,6)
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Fig. 1: HTDF scheduling diagram for the example task set

Fig. 2: EDF scheduling diagram for the example task set

We show the schedules derived by the HTDF algorithm (Figure 1), and the EDF algorithm (Figure 2):
For this example, both HTDF and EDF generate 6 context switches and 0 preemptions (but the schedules are

different). The results from the HTDF algorithm are a consequence of the implemented event-driven method to
select the next scheduling point (that tries to minimize preemptions). At time t= 8, HTDF selects task J3 because
its heuristic considers the computation time of the task (ci=2) as part of the equation to set the priorities while
EDF only considers the deadline of the tasks.

IV. PERFORMANCE COMPARISON BETWEEN HTDF AND EDF

A. Number of Context Switches and Number of Preemptions

1) Methods:
We evaluate the performance of HTDF by comparing with EDF using periodic, independent, and synchronous

release tasks with implicit deadlines. We selected as dependent variables the number of context switches and the
number of preemptions and as independent variables the utilization (70%, 80%, 90% and 100%) and the number
of tasks per task set (4, 6, 8 and 10).

We use the UUniFast algorithm proposed by Bini and Buttazo [14], to generate the task sets. This algorithm
generates independent tasks with randomly unbiased utilization factors. To generate the periods and computation
time of the tasks based on these utilization factors, we randomly selected the tasks’ periods from a set of predefined
values of time periods (including the least common multiple of the set), making sure the least common multiple was
always selected to guarantee that all the task sets have the same hyper-period. Lastly, we calculate the computation
time per task to meet the utilization factor generated by the UUniFast algorithm.

Based on the values of the independent variables we generated 16 test files with 100 task sets per file and we
executed the implementations of HTDF and EDF to obtain the average number of context switches and the average
number of preemptions.
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2) Results:
Average Number of Context Switches:

Table I shows the performance of HTDF and EDF in terms of the number of context switches based on the
independent variables number of tasks per task set and utilization for each test file.

TABLE I: Number of Context Switches: HTDF vs EDF

Utilization
70% 80% 90% 100%

HTDF EDF HTDF EDF HTDF EDF HTDF EDF
#

Ta
sk

s 4 63.68 65.07 76.99 78.25 93.91 95.76 114.55 116.32
6 109.12 109.94 116.7 118.28 126.99 129.94 142.72 144.66
8 152.17 153.28 167.12 168.68 183.58 186.63 193.62 196.02

10 194.57 195.3 258.12 259.24 271.33 271.93 287.37 289.28

Figures 3 and 4 present the average number of context switches based on the number of tasks per task set and
the utilization respectively.
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Fig. 3: Average Number of Context Switches based on the number of tasks per task set
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Average Number of Preemptions:
Table II shows the performance of HTDF and EDF in terms of the number of preemptions based on the

independent variables number of tasks per task set and utilization for each test file.

TABLE II: Number of Preemptions: HTDF vs EDF

Utilization
70% 80% 90% 100%

HTDF EDF HTDF EDF HTDF EDF HTDF EDF

#
Ta

sk
s 4 14.99 15.53 21.84 22.38 31.9 32.45 41.95 42.36

6 19.8 20.64 25.48 26.27 34.04 35.46 42.51 43.8
8 23.51 24.45 31.86 32.87 41.87 43.49 51.64 53.34
10 25.29 26.29 33.04 34.16 43.79 44.39 57.37 59.28

Figures 5 and 6 present the average number of preemptions based on the number of tasks per task set and the
utilization respectively.
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Fig. 5: Number of Preemptions based on the number of tasks per task set
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Results Analysis:
Based on the previous results, we can conclude that:
1) The number of context switches and the number of preemptions are directly proportional to both the number

of tasks per task set and the utilization for the studied algorithms. This behavior is a consequence of the
relationship between the complexity of the scheduling problem (due to the increase of the number of tasks
and the utilization) and the probability of a context switch or a preemption.

2) For the generated task sets, HTDF outperforms EDF in terms of the number of context switches with an
average difference of 1.20% for the number of tasks per task set and 0.99% for the utilization.

3) For the generated task sets, HTDF outperforms EDF in terms of the number of preemptions with an average
difference of 2.93% for the number of tasks per task set and 3.11% for the utilization.

B. Scheduler execution time

1) Methods:
To measure the performance of the HTDF algorithm against EDF, we use WindRiver Workbench 3.3 on a server

with an Intel i7-3770 processor running at 3.4 GHz, with 16 GB of RAM and 2 TB hard drive to implement the
studied algorithms, using the system viewer to capture the scheduling diagrams.

a) The task sets:
We generate 4 task sets with utilization approximately equal to 70%, 80%, 90% and 100% respectively. These

task sets are based on the X-38 avionics task set proposed by Rice and Cheng [4]. This task set has 13 periodic
tasks with precedence constraints and non-implicit deadlines. Table III presents the parameters of the tasks and
figure 7 presents the precedence constraints of the X-38 task set.

TABLE III: Original X-38 task set

No. Name ci di ti No. Name ci di ti
1 ICP-I50FC-SENSOR 2 10 20 8 FCP-P10FC 40 50 100
2 FCP-I50FC 1 10 20 9 FCP-O10FC 1 50 100
3 FCP-P50FC 5 10 20 10 ICP-I10FC-CMDS 1 50 100
4 FCP-O50FC 1 10 20 11 ICP-I50NFC-SENSOR 5 100 100
5 ICP-I50FC-CMDS 1 10 20 12 FCP-I50NFC 1 100 100
6 ICP-I10FC-SENSOR 2 50 100 13 FCP-P50NFC 2 100 100
7 FCP-I10FC 1 50 100

T6 T7 T8 T9 T10

T1 T2 T3 T4 T5

T11 T12 T13

50Hz FC 
Workload

10Hz FC 
Workload

50Hz NFC 
Workload

=

=

=

Fig. 7: X-38 task set precedence constraints

The X-38 201 avionics architecture is a four string, two-fault tolerant avionic system [15]. It uses four Flight
Critical Computers (FCC) for redundancy. The central part of the architecture is the FCC. Each FCC has two
processors (Flight Control Processor - FCP and the Instrumentation Control Processor - ICP). Figure 8 [15] shows
the X-38 Vehicle 201 Avionics Architecture.

To test the performance of HTDF and EDF, we change the deadlines and periods of the tasks (maintaining the
precedence constraints), making the X-38 task set feasible on a uniprocessor environment (U ≤ 1). To comply with
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Fig. 8: X-38 Vehicle 201 Avionics Architecture

the precedence constraints from the original X-38 task set, we apply the Rendezvous model [16] to generate our
independent task sets based on the selected values of utilization. Even though our simulations are not using the
original X-38 task set, these experiments are trying to replicate the implementation of the X-38 avionics on a less
powerful hardware, because we are using almost the same parameters as the original task set (number of tasks,
precedence constraints and computation time of the tasks).

Task set with U = 70%: For this task set, we change the parameters (di and ti) of two workloads from the original
X-38 task set. For the 50Hz FC workload (Task 1 thru 5), we change the deadlines to 25ms and the periods to
50ms. For the 10Hz FC workload (Task 6 thru 10), we change the deadlines to 75 ms and the periods remained
the same 100ms. The 50Hz NFC workload (Task 11 thru 13) parameters remain the same (100 ms). The utilization
of the generated task set is equal to 73%.

Task set with U = 80%: For this task set, we change the parameters (di and ti) of all the workloads from the
original X-38 task set. For the 50Hz FC workload (Task 1 thru 5), we changed the deadlines to 25ms and the
periods to 45ms. For the 10Hz FC workload (Task 6 thru 10), we change the deadlines to 75 ms and the periods to
90ms. For the 50Hz NFC workload (Task 11 thru 13), we change the deadlines to 90 ms and the periods to 90ms.
The utilization of the generated task set is equal to 81.1%.

Task set with U = 90%: For this task set, we change the parameters (di and ti) of all the workloads from the
original X-38 task set. For the 50Hz FC workload (Task 1 thru 5), we change the deadlines to 25ms and the periods
to 40ms. For the 10Hz FC workload (Task 6 thru 10), we change the deadlines to 75 ms and the periods to 80ms.
For the 50Hz NFC workload (Task 11 thru 13), we change the deadlines to 80 ms and the periods to 80ms. The
utilization of the generated task set is equal to 91.25%.

Task set with U = 100%: For this task set, we change the parameters (di and ti) of all the workloads from the
original X-38 task set. For the 50Hz FC workload (Task 1 thru 5), we change the deadlines to 25ms and the periods
to 37ms. For the 10Hz FC workload (Task 6 thru 10), we change the deadlines to 70 ms and the periods to 74ms.
For the 50Hz NFC workload (Task 11 thru 13), we change the deadlines to 74 ms and the periods to 74ms. The
utilization of the generated task set is equal to 98.64%.
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b) Implementing the studied algorithms in WindRiver WorkBench:
Figure 9 presents the model used to implement the studied scheduling algorithms in Workbench 3.3.

Workbench	3.3

Kernel	Tasks User	Tasks

Middleware	
Layer

Scheduler

Task	1 Task	2 Task	n…......

Fig. 9: Implementation of the schedulers in WindRiver WorkBench 3.3

We decided to implement our solution as a Workbench 3.3 kernel task (middleware layer). This layer is responsible
for measuring the execution time of the tasks created in our environment. It also creates and executes the scheduler
task to start the execution of the tasks. The scheduler task is responsible for loading the tasks table into the system
and to create and activate the tasks depending on their priorities.

To make the tasks run for a specific number of milliseconds, we use the delaylib.c function [17] that provides hard
delay routines for micro and millisecond periods. This function has a +/- 10% of error (based on our tests), therefore,
to collect the data for our analysis, we executed the simulations several times taking the first 10 observations per
experiment where the execution time of the scheduler was between +/- 1 ms of the theoretical hyper-period.

2) Results:
a) Scheduling Diagrams:

Tables IV, V, VI, VII present the generated task sets after applying the Rendezvous model to modified X-38
task sets with U = 70%, 80%, 90% and 100% respectively.

TABLE IV: Generated Task set with U = 70%

No. Name ci di ti No. Name ci di ti
1 Task1 2 17 50 8 Task8 40 73 100
2 Task2 1 18 50 9 Task9 1 74 100
3 Task3 5 23 50 10 Task10 1 75 100
4 Task4 1 24 50 11 Task11 5 97 100
5 Task5 1 25 50 12 Task12 1 98 100
6 Task6 2 32 100 13 Task13 2 100 100
7 Task7 1 33 100

TABLE V: Generated Task set with U = 80%

No. Name ci di ti No. Name ci di ti
1 Task1 2 17 45 8 Task8 40 73 90
2 Task2 1 18 45 9 Task9 1 74 90
3 Task3 5 23 45 10 Task10 1 75 90
4 Task4 1 24 45 11 Task11 5 87 90
5 Task5 1 25 45 12 Task12 1 88 90
6 Task6 2 32 90 13 Task13 2 90 90
7 Task7 1 33 90

When comparing the number of context switches and number of preemptions, we found that for U = 70% and
100% both HTDF and EDF generate the same number of context switches and number of preemptions. For U =
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TABLE VI: Generated Task set with U = 90%

No. Name ci di ti No. Name ci di ti
1 Task1 2 17 40 8 Task8 40 73 80
2 Task2 1 18 40 9 Task9 1 74 80
3 Task3 5 23 40 10 Task10 1 75 80
4 Task4 1 24 40 11 Task11 5 77 80
5 Task5 1 25 40 12 Task12 1 78 80
6 Task6 2 32 80 13 Task13 2 80 80
7 Task7 1 33 80

TABLE VII: Generated Task set with U = 100%

No. Name ci di ti No. Name ci di ti
1 Task1 2 17 37 8 Task8 40 68 74
2 Task2 1 18 37 9 Task9 1 69 74
3 Task3 5 23 37 10 Task10 1 70 74
4 Task4 1 24 37 11 Task11 5 71 74
5 Task5 1 25 37 12 Task12 1 72 74
6 Task6 2 27 74 13 Task13 2 74 74
7 Task7 1 28 74

80% and 90%, HTDF was able to outperform EDF because it minimized by one the number of context switches
and the number of preemptions.

For the task set with U = 80%, figure 10 shows that at t=45, task8 is running but the scheduler is called (because
a new instance of task1 becomes active). For HTDF (figure 10.a), task8 doesn’t get preempted because the scheduler
knows that task8 can finish without making the other tasks in the system miss their deadlines (using the information
provided by the density of the tasks). For EDF (figure 10.b), task8 gets preempted because the deadline of task1
is lower (t=62) than the deadline of task8 (t=73). For the task set with U = 90% we saw the same behavior but at
a different scheduling point time (t=40).

(a) HTDF (b) EDF

Fig. 10: Workbench System Viewer Scheduling Diagrams for U=80%

These results follow the same behavior shown in our previous experiments in terms of the minimization of the
number of context switches and the number of preemptions. Therefore, we can conclude that for the studied task
sets based on the X-38 avionics, HTDF outperforms EDF in terms of the number of context switches and the
number of preemptions.

b) Scheduler execution time analysis:
Figure 12 presents the performance analysis of HTDF and EDF in terms of the execution time of the scheduler.

The results show that for the task set with U=70% the average execution time of the scheduler for HTDF was
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(a) HTDF (b) EDF

Fig. 11: Workbench System Viewer Scheduling Diagrams for U=90%

246.882 µsec and for EDF was 248.032 µsec. For the task set with U=80% the average execution time of the
scheduler for HTDF was 241.84 µsec and for EDF was 248.815 µsec. For the task set with U=90% the average
execution time of the scheduler for HTDF was 243.69 µsec and for EDF was 249.138 µsec. For the task set with
U=100% the average execution time of the scheduler for HTDF was 247.366 µsec and for EDF was 249.178 µsec.

The analysis for the execution time of the scheduler for HTDF and EDF shows a similar performance for U
= 70% and 100% because the scheduling solutions for both algorithms generated the same number of context
switches and preemptions. For U = 80% and 90%, HTDF was able to reduce the execution time of the scheduler
when compared against EDF because of the reduction in the number of preemptions. We can conclude that the
performance of HTDF is similar to EDF in terms of the execution time of the scheduler because the difference
between the studied algorithm is less than 5 µsec for the worst case (80% utilization).
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Fig. 12: Scheduler execution time analysis for the modified X-38 task sets

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the task density per studied interval (TDi,t) as a parameter to schedule real-time
tasks. The HTDF algorithm sets the priorities of the tasks based on the highest TDi,t = ci/min(di, pi) * min(d, p)t
/ min(di, pi), where min(d, p)t is the closest deadline to the scheduling time t, and uses an event-driven method to
calculate the next scheduling time point to be analyzed by the algorithm.

We have presented the design, feasibility analysis and implementation of the HTDF scheduling algorithm for
real-time tasks.
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A comparison between the HTDF and EDF has been performed using two scenarios to measure the performance of
the proposed algorithm in terms of: (a) number of context switches and number of preemptions; and (b) execution
time of the scheduler. The first scenario used synthetic task sets with periodic, independent, and synchronous
release tasks with implicit deadlines while the second scenario used the X-38 task set [4] to generate 4 task sets
with precedence constraints and non-implicit deadlines.

The results from the first scenario show that HTDF outperforms EDF in terms of the number of context switches
and the number of preemptions for all the generated test files (16 files, 100 task sets per file). The results from
the second scenario show that the performance of HTDF is similar to EDF in terms of the execution time of the
scheduler because the difference between the studied algorithm is less than 5 µsec for the worst case (80%).

For future work, we propose: (a) to study the use of the task density per studied interval (TDi,t) as a parameter
to schedule real-time tasks in multiprocessors (based on our findings and the related works); (b) to design a new
scheduling algorithm for real-time systems in multiprocessors based on the HTDF algorithm proposed in this paper;
and (c) to test our multiprocessor scheduling algorithm using the original X-38 avionics task set.
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