
Does Unification Help in Normalization?

Rakesh M. Verma and Wei Guo

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-11-05

July 5, 2011

Keywords: Unification, Normalization.
Abstract

In this paper, we present a preprocessor for rules based on unification, which has the potential to enable
faster search for potential redexes in normalization. We implement this idea in Laboratory for Rapid
Rewriting (LRR) [1] and compare our method with ELAN [2] and Maude [3] using both favorable and
unfavorable examples to demonstrate the performance.

Research supported in part by NSF grant CCF 0306475

1

Does Unification Help in Normalization?
Rakesh M. Verma and Wei Guo

Abstract

In this paper, we present a preprocessor for rules based on unification, which has the potential to enable faster
search for potential redexes in normalization. We implement this idea in Laboratory for Rapid Rewriting (LRR)
[1] and compare our method with ELAN [2] and Maude [3] using both favorable and unfavorable examples to
demonstrate the performance.

Index Terms

Unification, Normalization.

I. INTRODUCTION

Fast rewriting is needed for equational programming, rewrite based formal verification methods, and symbolic
computing systems. In any implementation of rewriting techniques efficiency is a critical issue [4]. The goals of this
paper are to enhance the efficiency of the normalization by integrating a preprocessor for rules and to determine
how much can unification help in future matching attempts in practice, especially when built-in operators such as
arithmetic present complications. The immediate motivation is to effectively cut the time spent in traversing both
the term and the rules in order to find a match. The preprocessor for rules utilizes the unification results obtained
from a set of rules to facilitate matching. Our idea is applicable to any interpreter. Since we have been working
on LRR , an interpreter for a rule-based programming language with an efficient history option, we use it as a
platform to demonstrate our idea.

The rest of this paper is organized as follows. We first present some preliminaries including a brief introduction
to LRR in Section 2. Then we discuss how unification helps in normalization in Section 3. The experimental results
are presented in Section 4. In Section 5, we conclude the paper with some promising directions for future research.

II. PRELIMINARIES

A Term Rewriting System is a set of rewriting rules, R, and a given term t0. The objective is to compute a normal
form of t0, tn. We denote the ith rule as rulei : lhsi ⇒ rhsi;. We define that the ith step of the normalization
is a process that builds a new term ti by applying rulej at a subterm of term ti−1, in which i ∈ N, 0 < i ≤ n.
We use ti−1 →(i,j) ti to denote the ith step of the normalization. Thus, the whole process of normalization can
be denoted as a sequence, t0 →(1,j) t1, ..., ti →(i+1,j′) ti+1, ..., tn−1 →(n,j′′) tn. Terms t1, ..., ti, ..., tn−1 are called
intermediate results.

A position of a term t is a sequence of natural numbers that is used to identify the locations of subterms of t.
The subterm of t = f(s1, . . . , sn) at position p, denoted t|p, is defined recursively: t|λ = t, where λ is the empty
sequence, t|k = sk, and t|k.l = (t|k)|l for 1 ≤ k ≤ n and undefined otherwise [5].

LRR is one of the interpreters for rule based programming. The input of LRR is a file representing the rules R

and a file representing the given term t0. It consists of a term graph interpreter TGR, and a term graph rewriter
storing the history of its reductions, called Smaran, based on the Congruence Closure based Normalization Approach
(CCNA) [6]. Smaran constructs signatures representing the terms and equivalence classes consisting of equivalent
signatures. Please consult [6], [7] for more details. TGR uses Term Graph Rewriting which has no class or signature.

An extension of almost linear unification (ALU). The objective of unification is, given two terms l, r, to find a
substitution σ such that σ(l) and σ(r) are syntactically identical. The ALU algorithm uses Directed Acyclic Graphs
(DAGs) as the data structures of the terms and requires variables to be shared, which reduces the complexity from
exponential to almost linear (please see [8] for more details). We extend the concept of unification as follows.
Under strict unification, a constant never unifies with a function having at least one child. But if a function can be
evaluated during the normalization and the constant is one of the possible results, we consider that they “unify”.

Research supported in part by NSF grant CCF 0306475

2

For example, consider the Fibonacci function in appendix, either term true or false is the result of term > (x, 1)
and here we consider that true and false unify with > (x, 1).

III. HOW DOES ALU HELP IN NORMALIZATION

We find that many matches found in normalization happen between an instance σ(r|p) of a subterm r|p of a
RHS r and an LHS l. This implies that the LHS unifies with this subterm of the RHS, since their variables are
“effectively” disjoint. And if a subterm from a RHS can unify with a LHS, there is a great chance to find a match
between the instance of the subterm and the LHS when the instance is built by the RHS. Before normalization
starts, we add a preprocessor for rules which collects the unification results between LHS’s and RHS’s using ALU.
In normalization procedure, we introduce a list, the ALU-list, to let the unification results help to find a match. In
one step of normalization, instead of looking for a match by scanning all subterms of the term to be normalized
and all the rules, our normalization procedure first looks for a match from the ALU-list. In Figure 1 below, in
ti−1 →(i,j) ti, a match is found between a subterm u of ti−1 and lhsj . Then the subterm u is replaced by v, the
instance of rhsj , and we get ti. Term v shares the same overall structure as rhsj . If we know that a subterm
x = rhsj|p can unify with lhsk, there is a great chance to find a match between term w = v|p, the instance of
term x, and lhsk in the next step. In the i + 1th step, normalization can try the term w and lhsk first. If a match
is found, term w is replaced by the instance of rhsk.

Fig. 1. Unification results can help in normalization

Actually, significant parts of all the intermediate results, t1, ..., ti, ..., tn−1 and the normal form tn are constructed
from the RHS’s and much of the overall structure of terms can be safely predicted from the RHS’s (the exceptions
are the variable substitutions and unexplored parts of the intermediate terms). If before normalization, we know the
unification results between each subterm in every RHS and each LHS, we can use the results to find the matches
in normalization efficiently. But not all the unification results lead to successful matches. In this case, and for
normalizing t0, LRR calls original Smaran or TGR to find matches.

A preprocessor for rules tries to unify every subterm in every RHS with every LHS and stores the successful
results denoted by a list of pairs (C,P) before normalization. In Figure 1, subterm x from rhsj unifies with lhsk.
We say that rulek is a candidate and for this example C = k. We define the position a point, which for this
example would be stored in P = p. Storing term x in the node does not help normalization but storing P does
because normalization needs to find w by following P from v. The preprocessor stores the indexes of the rule in
C and uses a single linked list to store P which is essentially a sequence of natural numbers. There may be more
than one pair for each RHS. For every RHS, the preprocessor uses a single linked list to store the nodes.

The ALU-list is a singly-linked list to store the information obtained from the unification results during the
normalization. Each node in the list is a 3-tuple (i, c, s), where i indicates the ith step of normalization, c indicates
a candidate, in which c = C , and s represents the term that is possible to match lhsc, such as w = v|P in Figure
1. We use stack operations to implement a depth-first order in normalization. In one step, tuples obtained from the
nodes of the RHS that is applied in this step are pushed into the ALU-list. In the next step, the ALU-list pops
a tuple (i′, c′, s′) and tries to match the term s′ and lhsc′ . If they match, LRR continues normalization. If not,
the ALU-list pops the next tuple. When the ALU-list is empty, normalization goes back to the original algorithm
searching for new match. In LRR, normalization goes back to Smaran or TGR. In Figure 1, rhsj has a node (k, p)
in which x = rhsj|p. Normalization locates term w = v|p and pushes the tuple (i, k, w) into the ALU-list. If the
tuple is popped at the i + 1th step, rulek is applied at term w to form term ti+1.

3

TABLE I
EXPERIMENTAL RESULTS ON NORMALIZATION TIME

Benchmark ELAN Maude LRR
w/o memo w/ memo Smaran Smaran+ALU TGR TGR+ALU

binsort(1500) 164.2228 0.6936 463.6586 2.2301 2.6398 1.8197 1.7829
bintree(380) 0.1152 0.0044 0.0936 0.0160 0.0144 0.0116 0.0116
dfa(1363) 0.0016 0.0000 0.0008 0.0540 0.0540 0.0396 0.0424
fib(20) 1.4416 0.0272 0.0000 0.0000 0.0004 4.4851 4.5507
merge(20000) 17.8455 0.0404 70.2658 0.0460 0.0524 0.0300 0.0296
qsort(1800) 66.6180 1.1872 30.7426 10.0294 8.8518 3.4254 3.3874
rev(19900) 66.6304 0.0380 129.6359 0.0484 0.0548 0.0328 0.0332
rfrom(19996) 1.7005 0.0408 44.1588 0.0384 0.0408 0.0224 0.0220
sieve(10000) 169.6300 0.4900 29.6235 1.5889 1.7709 0.8277 0.8257

A. Optimizations

In order to improve the efficiency of integration of the preprocessor and the normalization procedure, we
implemented the following optimizations.

Mutually exclusive detection is a method to cut unnecessary insertions into the ALU-list caused by the extension
of ALU. For example, both terms true and false are considered as candidates for the term > (x, 1). We add two
nodes in unification. But only one tuple will succeed in matching. So, by evaluating the term > (x, 1) before
pushing a candidate into the ALU-list, normalization picks up only the “right” tuple.

Candidate elimination contains three ways to delete tuples from the ALU-list. Same point elimination is a
method to cut unnecessary matching attempts. Tuples having the same value of i and same value of s apply at
the same point of the same instance of the RHS. Once we find the first match from these tuples, which have the
same value of s, the intermediate term probably will change in the next reduction step and the remaining tuples
are deleted. Descendants elimination also cuts unnecessary matching attempts. If the parent succeeds in matching,
the matching attempts for its children are unnecessary since the intermediate term probably will change. Changed
signature check cuts unnecessary matching attempts only when the preprocessor works with Smaran. Smaran checks
whether the unreduced signature of the class has changed since the tuple containing the class was added into the
ALU-list. If yes, LRR deletes the tuple.

IV. EXPERIMENTAL RESULTS

The preprocessor for rules has still some room for improvement. A Linux version of LRR v3.0 and some
examples can be downloaded from http:/www.cs.uh.edu/˜evangui. LRR v3.0 provides: i) the original
Smaran and TGR, ii) a preprocessor for rules with original Smaran and with original TGR. In the reference
[1], [9], [6], several optimizations are discussed including structure sharing, and CCNA. We use Maude 2.6 32-
bit version which can be found at http://maude.cs.uiuc.edu/download. We use ELAN interpreter 3.6g
which can be found at http://webloria.loria.fr/equipes/protheo/SOFTWARES/ELAN/manual/
index-manual.html.

Performance Results. We present the experimental results on nine benchmarks (rules can be found in [10] for
lack of space) to illustrate the level of efficiency. LRR is implemented in C and runs on Linux. Normalization
times are on a 2.67GHz Intel i5 560M Ubuntu 10.10 linux kernel 2.6.35-22 system with 8GB of memory using
gcc compiler (v. 4.4.5) with optimization level 3. We are aware of the difficulties of comparing different software
systems. Each benchmark for three systems uses exactly same algorithm. Rules in the benchmark are semantically
identical. Syntactic differences are due to differences in the rule specifications for the three interpreters. Table 1
shows the average results of 10 executions in seconds for nine benchmarks, which can be found at the URL given
above. From Table 1, even though we find that Maude without memo is the fastest option in most benchmarks,
Smaran and/or TGR are close. It is interesting to see that Smaran is not far behind even in examples that do not
use history, despite saving the entire history of rule applications. ELAN interpreter runs slow in most cases. We
are aware that the ELAN project focuses more on the compiler than the interpreter. Maude with memo runs faster
for fib(20) and dfa but is much slower for the other benchmarks tested. The preprocessor does not completely
beat TGR or Smaran. Apparently there is some inefficiency in the implementation of the preprocessor. We think

4

we can improve it in the following ways. First, we plan to write a new function for matching since we have a
great accuracy in prediction. The new function should explore the unification results deeper. The other, when the
preprocessor cannot initiate a match, LRR should find the next match in a more efficient way. We plan to track the
positions of variables in a RHS and direct LRR to try terms covered by the variables rather than traversing from
the root. The preprocessor of rules runs slower than original methods in most examples, but it cuts the unnecessary
matching attempts significantly. Although it does not yet control the normalization independently, the percentage
of successful matches is relatively high.

Related work. We did an extensive search for rule-based programming interpreters using the papers [4], [11] and
the Rewriting Page on the web, but we have been unable to find any interpreter that includes any such application
of unification to speed up the matching process during normalization. Apart from Maude, in [11] a compiler for
rules is described, but there is no comparable effort on speeding up normalization. The only other interpreter that
we could find is CRSX [12], which does not include built-ins and could only handle a string of length 819 in the
dfa example.

V. DISCUSSION AND FUTURE WORK

We presented a preprocessor for rules, a method to improve the efficiency of normalization. The preprocessor
beats the earlier strategy in accurately finding the next match. We plan to implement the preprocessor in a more
efficient way and try to use more information from unification to help speed up the normalization even more.
Acknowledgments. We want to thank S. Senanayake, J. Thigpen, and H. Shi for initial work on LRR, and Z. Liang
for some examples.

REFERENCES

[1] R. Verma and S. Senanayake, “LR
2 : A laboratory for rapid term graph rewriting,” in Proceedings of the 10th International Conference

on Rewriting Techniques and Applications, 1999, pp. 252–255.
[2] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek, “Elan: A logical framework based on computational systems,”

Electr. Notes Theor. Comput. Sci., vol. 4, pp. 35–50, 1996.
[3] P. L. M. Clavel, S. Eker and J. Meseguer, “Principles of maude,” in Electronic Notes in Theoretical Computer Science, J. Meseguer,

Ed., vol. 4. Elsevier Science Publishers, 1996, pp. 65–89.
[4] M. Hermann, C. Kirchner, and H.Kirchner, “Implementations of term rewriting systems,” The Computer Journal, vol. 34(1), pp. 20–33,

1991.
[5] N. Radcliffe and R. M. Verma, “Uniqueness of Normal Forms is Decidable for Shallow Term Rewrite Systems,” in IARCS Annual

Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010), ser. Leibniz International
Proceedings in Informatics (LIPIcs), K. Lodaya and M. Mahajan, Eds., vol. 8. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2010, pp. 284–295. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2010/2871

[6] R. M. Verma, “Smaran: A congruence-closure based system for equational computations,” in Proceedings of the 5th International
Conference on Rewriting Techniques and Applications, 1993, pp. 457–461.

[7] H. Shi, “Intergrating associative and commutative matching in the LR
2 laboratory for fast, efficient and practical rewriting techniques,”

Master’s thesis, University of Houston, 2000.
[8] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge University Press, 1999.
[9] R. Verma, “Static analysis techniques for equational logic programming,” in Proceedings of the 1st ACM SIGPLAN Workshop on

Rule-based Programming, 2000.
[10] W. Guo and R. Verma, “Does unification help in normalization?” University of Houston Computer Science Department, Tech. Rep.

UH-CS-11-05, 2011.
[11] M. Vittek, “A compiler for nondeterministic term rewriting systems,” in RTA, 1996, pp. 154–167.
[12] J. W. Klop, V. van Oostrom, and F. van Raamsdonk, “Combinatory reduction systems: Introduction and survey,” Theor. Comput. Sci.,

vol. 121, no. 1&2, pp. 279–308, 1993.

APPENDIX

A Concrete Example
To illustrate the details, we use a concrete example in LRR which computes Fibonacci numbers (we use Fibo

for short).

fib(x) ⇒ f(> (x, 1), x) (1)
f(true, x) ⇒ +(fib(−(x, 1)), f ib(−(x, 2))) (2)

f(false, x) ⇒ 1; (3)

5

The normalization process using TGR is (under a depth-first left-most order) below:

fib(2) →(1,1) f(true, 2)

→(2,2) +(fib(1), f ib(0))

→(3,1) +(f(false, 1), f ib(0))

→(4,3) +(1, f ib(0))

→(5,1) +(1, f(false, 0))

→(6,3) 2 (4)

In the 1st step, LRR calls Smaran or TGR to initiate matching because the preprocessor has no information.
rule1 is picked up and t1 = f(true, 2). Then, the preprocessor knows that the term f(> (x, 1), x) unifies with
lhs2:f(true, x), and lhs3:f(false, x). It looks like LRR tries to match f(true, 2) with f(true, x) and f(false, x).
But in Section III.A, we show that LRR picks up only f(true, x) while the original LRR attempts to match
f(true, 2) with all 3 rules. LRR picks up rule2 and gets t2 = +(fib(1), f ib(0)). The preprocessor still knows
that the terms fib(−(x, 1)) and fib(−(x, 2)) unify with lhs1:fib(x). Under a depth-first left-most order, LRR
starts from fib(1) and succeeds in matching fib(1) with fib(x) while the original LRR traverses from the root of
+(fib(1), f ib(0)) searching for a match. LRR picks rule1 and gets t3 = +(f(false, 1), f ib(0)). After 6 steps,
LRR stops at the normal form, 2.

In ALU, for each RHS, it is possible that some subterms unify with multiple rules. Thus, there may be more
than one pair for each RHS. After LRR parses all the rules and before it starts the normalization, for each RHS, the
preprocessor tries to unify every subterm with every LHS and stores the results for each RHS. In Fibo, f(> (x, 1), x)
unifies with lhs2:f(true, x), lhs3:f(false, x); fib(−(x, 1)) and fib(−(x, 2)) unify with lhs1:fib(x). So, rule1

has a list of two pairs (2, λ), (3, λ). rule2 has a list of two pairs (1, (1)), (1, (2)).
In normalization, for the combination of Smaran and ALU, s in the 3-tuple (i, c, s) is the number of the class

containing the term, indicating the unreduced signature of the class. For the combination of TGR and ALU, s is
the term.

In Fibo, rule2 is used in the 2nd step. So LRR (using TGR) gets two nodes from rule2, (1, (1)), (1, (2)), creates
two tuples (2, 1, f ib(1)) and (2, 1, f ib(0)), and pushes them into the ALU-list. In the 3rd step, (2, 1, f ib(1)) is at
the top of the ALU-list. So LRR pops the tuple and tries to match fib(1) with lhs1. Since they match, LRR builds
t3 and evaluates the built-in operations. LRR creates 2 tuples (3, 2, f(false, 1)), (3, 3, f(false, 1)) but only pushes
(3, 3, f(false, 1)) into the ALU-list because of mutually exclusive detection.

Optimizations
Mutually exclusive detection. We find that the extension of ALU brings us some overhead. For example, both

terms true and false are considered as candidates for the term > (x, 1). Thus, two nodes are stored by the
preprocessor. But eventually only one rule will succeed in matching. So, it is better to push the “right” tuple only
into the ALU-list in normalization. LRR builds the instance of the RHS and evaluates the built-in operations before
it pushes tuples. It is easy to detect the value of > (x, 1) and pick up the “right” tuple. In most cases, the terms
allowed by the extension of ALU, such as true and false, are mutually exclusive. In ALU, our method adds
two fields to the node which becomes (C,P,LOC, V AL). LOC indicates the position of the term l|LOC in a
LHS l. V AL indicates the value of the term. Normalization copies LOC and V AL into the tuple which becomes
(i, c, s, loc, val). LRR picks up the “right” tuple in which val is equal to the value of the instance σ(rhsc|loc). So
far, the detection can detect true, false, and : (nonempty list), nil (empty list). And the LOC can only stores
one integer which indicates the nth child of the root of a RHS. In our benchmarks, this detection is sufficient. In
Fibo, nodes under rule1 turn to (2, (λ), (1), true), (3, (λ), (1), false) indicating the 1st child of the root of lhs2 is
true, and the 1st child of the root of lhs3 is false. In the 2nd step, LRR detects the value of true, and thus picks
the tuple (1, 2, true, (1), true) obtained from the node (2, (λ), (1), true) and drops the tuple (1, 3, true, (1), false)
which is obtained from the node (3, (λ), (1), false) .

Same point elimination It is possible that more than one LHS unify with one subterm in a RHS. Therefore
the RHS gets more than one node with same P value in unification and more than one tuple with same s value
are pushed into the ALU-list. However, from these tuples, once we find the first match, the value of s probably
changes in the next step of normalization and the rest tuples have little chance to lead to a new match. So, we just
delete the rest tuples. In ALU, we add one more field, SAME, into the node. Different points are represented by

6

different values of SAME. Normalization copies the value of SAME to make a new tuple (i, c, s, same). During
the normalization, the ALU-list may contain tuples from different steps of normalization. We find that the tuples
in the ALU-list are in the lexicographical order of (i, same) in LRR. So after a successful match, normalization
advances to the next tuple and eliminates the tuples with the same value of i and the same value of same. The
same point elimination stops when a tuple with a different i or a different same is met. In Fibo, if not considering
about mutually exclusive detection, in the 2nd step, after a matching between f(true, 2) and lhs2, we can delete
the tuple (1, 3, true, same).

Descendants elimination. In ALU, we find that a parent and its descendants in a RHS may unify with either
one or more rules. In normalization, if the parent succeeds in matching with term t, the matching attempts for its
descendants are unnecessary because in the following steps of normalization t probably changes. In LRR, nodes
are stored in a depth first order, so are tuples. It is easy for LRR to locate descendants upon a successful match.
We add a LV L into the node indicating the level of the subterm in the RHS. We copies this value to the tuple
as lvl. Upon a successful match from tuple (i, c, s, lvl), we keep eliminating the next tuple (i′, c′, s′, lvl′) if i′ = i

and lvl′ > lvl.
Changed signature check. In Smaran, LRR constructs the signature to represent the term and the class to hold

equivalent signatures. Smaran tries to match the unique unreduced signature of a class and LHS’s. In the tuple
(i, c, s), s stores the class of the subterm in ti not the unreduced signature. In fact, unreduced signatures keep
changing during the normalization. LRR checks whether the unreduced signature of class s has changed since the
tuple was added into the ALU-list. If yes, LRR will delete the tuple. If not, LRR will try to match. TGR does not
need this check since in TGR s represents the term which never changes.

Benchmarks
We use nine benchmarks for ELAN, Maude, and LRR. The rules are listed below. All benchmarks for 3 interpreters

are also available at http:/www.cs.uh.edu/˜evangui.
1. binsort. Binary insertion sort. This program sorts a list by inserting values into a binary search tree.

ins(x, nil) ⇒ node(nil, x, nil) (5)
ins(x, node(l, v, r)) ⇒ instest(x,> (x, v), < (x, v), l, v, r)) (6)

instest(x, false, true, l, v, r) ⇒ node(ins(x, l), v, r) (7)
instest(x, true, false, l, v, r) ⇒ node(l, v, ins(x, r)) (8)

instest(x, false, false, l, v, r) ⇒ node(l, v, r) (9)
cat(: (x, y), z) ⇒ : (x, cat(y, z)) (10)

cat(nil, z) ⇒ z (11)
binsort(: (x, y)) ⇒ bs(ins(x, nil), y) (12)

bs(n, : (x, y)) ⇒ bs(ins(x, n), y) (13)
bs(n, nil) ⇒ makelist(n) (14)

makelist(node(l, v, r)) ⇒ cat(makelist(l), : (v,makelist(r))) (15)
makelist(nil) ⇒ nil (16)

2. bintree. This program inserts a value into a binary search tree.

ins(x, nil) ⇒ node(nil, x, nil) (17)
ins(x, node(l, v, r)) ⇒ instest(x,> (x, v), < (x, v), l, v, r)) (18)

instest(x, false, true, l, v, r) ⇒ node(ins(x, l), v, r) (19)
instest(x, true, false, l, v, r) ⇒ node(l, v, ins(x, r)) (20)

instest(x, false, false, l, v, r) ⇒ node(l, v, r) (21)

3. dfa. This program simulates a deterministic finite automaton.

a(q0) ⇒ q1 (22)
b(q0) ⇒ q0 (23)

7

a(q1) ⇒ q0 (24)
b(q1) ⇒ q1 (25)

4. fib. This program calculates the nth Fibonacci numbers. Please refer to the concrete example
5. merge. This program merges two lists into one.

merge(nil, nil) ⇒ nil (26)
merge(: (x, y), nil) ⇒ : (x, y) (27)
merge(nil, : (x, y)) ⇒ : (x, y) (28)

merge(: (x, y), : (u, v))) ⇒ : (x, : (u,merge(y, v))) (29)

6. qsort. This program implements quicksort on a list of natural numbers.

cat(: (x, y), z) ⇒ : (x, cat(y, z)) (30)
cat(nil, z) ⇒ z (31)
sort(nil) ⇒ nil (32)

sort(: (x, y)) ⇒ cat(sort(smaller(x, y)),

cat(: (x, nil), sort(larger(x, y)))) (33)
smaller(x, nil) ⇒ nil (34)

smaller(x, : (y, z)) ⇒ f(< (x, y), x, y, z) (35)
f(true, x, y, z) ⇒ smaller(x, z) (36)

f(false, x, y, z) ⇒ : (y, smaller(x, z)) (37)
larger(x, nil) ⇒ nil (38)

larger(x, : (y, z)) ⇒ g(< (x, y), x, y, z) (39)
g(true, x, y, z) ⇒ : (y, larger(x, z)) (40)

g(false, x, y, z) ⇒ larger(x, z) (41)

7. rev. This program reverses a list.

rev(x) ⇒ apprev(x, nil) (42)
apprev(: (x, y), z) ⇒ apprev(y, : (x, z)) (43)

apprev(nil, w) ⇒ w (44)

8. rfrom. This program outputs a list of natural numbers in a reverse order.

rfrom(x, y) ⇒ rffrom(> (y, 0), x, y) (45)
rffrom(true, x, y) ⇒ : (x, rfrom(−(x, 1),−(y, 1))) (46)

rffrom(false, x, y) ⇒ nil (47)

9. sieve. This program outputs a list of prime numbers from a list of natural numbers greater than 1.

fsieve(true, x, l, y) ⇒ : (x, sieve(filter(x, l),−(y, 1))) (48)
fsieve(false, x, l, y) ⇒ nil (49)

filter(n, : (x, l)) ⇒ ffilt(= (%(x, n), 0), n, x, l) (50)
filter(n, nil) ⇒ nil (51)

ffilt(true, n, x, l) ⇒ filter(n, l) (52)
ffilt(false, n, x, l) ⇒ : (x, filter(n, l)) (53)

sieve(: (x, l), y) ⇒ fsieve(> (y, 0), x, l, y) (54)
sieve(nil, y) ⇒ nil (55)

sieve(x, 0) ⇒ nil (56)

