

INVOLVING CLIENTS IN DISTRIBUTION
OF VIDEOS ON DEMAND

Santosh Kulkarni Jehan-François Pâris

Computer Science Department
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-06-05

May 24, 2006

Keywords: Video on Demand, Distribution Protocols, Stream Tapping, Multiple Clients

Abstract

We present a stream tapping protocol that involves clients in the video distribution
process. As in conventional stream tapping, our protocol lets new clients tap the most
recent broadcast of the video they are watching. While conventional stream tapping
required the server to send to these clients the part of the video they missed, our protocol
delegates this task to the clients that are already watching the video, thus greatly reducing
the workload of the server. Unlike previous solutions involving clients in the video
distribution process, our protocol works with clients that can only upload video data at a
fraction of the video consumption rate and includes a mechanism to control its network
bandwidth consumption.

 2

INVOLVING CLIENTS IN THE DISTRIBUTION OF VIDEOS ON DEMAND

Santosh Kulkarni Jehan-François Pâris

Department of Computer Science,
University of Houston, Houston, TX 77204-3010

Abstract

We present a stream tapping protocol that involves clients in the video distribution process. As in
conventional stream tapping, our protocol lets new clients tap the most recent broadcast of the
video they are watching. While conventional stream tapping required the server to send to these
clients the part of the video they missed, our protocol delegates this task to the clients that are
already watching the video, thus greatly reducing the workload of the server. Unlike previous
solutions involving clients in the video distribution process, our protocol works with clients that
can only upload video data at a fraction of the video consumption rate and includes a mechanism
to control its network bandwidth consumption.

I. INTRODUCTION

Distributing videos on demand is a costly proposition, mostly because of the high
bandwidth requirements of the service. Assuming that the videos are in MPEG-2 format,
each user request will require the delivery of approximately six megabits of data per
second. Hence, a video server allocating a separate stream of data to each request would
need an aggregate bandwidth of six gigabits per second to accommodate one thousand
overlapping requests.

This situation has led to numerous proposals aimed at reducing the bandwidth
requirements of VOD services. These proposals can be broadly classified into two
groups. Proposals in the first group are said to be proactive because they distribute each
video according to a fixed schedule that is not affected by the presence–or the absence–of
requests for that video. They are also known as broadcasting protocols. Other solutions
are purely reactive: they only transmit data in response to a specific customer request.
Unlike proactive protocols, reactive protocols do not consume bandwidth in the absence
of customer requests.

Nearly all these proposals assume a clear separation of functions between the server,
which distributes the video, and the customers, who watch it on their personal computers
or on their television sets. They do not take advantage of the upstream bandwidth of the
clients to lower thee server’s workload.

The stream tapping protocol we present here is the first protocol that can harness the
collective bandwidth of clients with limited individual upstream bandwidths. As in
conventional stream tapping, our protocol requires the server to start a new video
broadcast whenever a client cannot get enough video data by “tapping” a previous
broadcast of the same video. Unlike conventional stream tapping, our protocol uses the
available upstream bandwidth of previous clients to reduce the amount of video data that
the server will still have to send to the clients that “tap” a previous broadcast of the video.
As we will see, delegating these tasks to the clients results in a dramatic reduction of the

 3

Client a

Client b

Client c

Stream from server

β

Stream from customer a

Stream from server

β
Fig. 1. How chaining works.

server workload at medium to high request arrival rates.

II. PREVIOUS WORK

Chaining [4] was the first video distribution protocol to take advantage of the upstream
bandwidth of its clients. It constructs chains of clients such that (a) the first client in the
chain receives its data from the server and (b) subsequent clients receive their data from
their immediate predecessor. As a result, video data are “pipelined” through the clients
belonging to the same chain. Since chaining only requires clients to have very small data
buffers, a new chain has to be restarted every time the time interval between two
successive clients exceeds the capacity β of the buffer of the first client. Fig. 1 shows
three sample client requests. Since client a is the first customer, it will get all its data
from the server. As client b arrives less than β minutes after customer a, it can receive all
its data from client a. Finally client c arrives more than β minutes after client a and must
be serviced directly by the server.

The cooperative video distribution protocol [2] extends the chaining protocol by
taking advantage of the larger buffer sizes of modern clients. If all clients have buffers
large enough to store the entire video, the server will never have to transmit video data at
more than the video consumption rate.

Stream tapping [1] requires each client set-top box to have a buffer capable of storing
at least 10 to 15 minutes of video data and to be able to receive data at at least twice the

Complete streamClient a

Useful part of complete streamClient b

Tap

Δt Δt

Fig. 2. How stream tapping works.

video consumption rate. This buffer will allow the set-top box to “tap” into data streams
that were originally created for previous clients, and then store these data until they are
needed. In the best case, clients obtain most of their data from an existing stream.

In particular, stream tapping defines two types of streams. Complete streams
broadcast a video in its entirety. Full tap streams can be used if a complete stream for

 4

the same video started Δ ≤ b minutes in the past, where b is the size of the client buffer,
measured in minutes of video data. In this case, the client begins receiving the complete
stream right away, storing the data in its buffer. Simultaneously, it receives a full tap
stream and uses it to display the first Δ minutes of the video. After that, the client will
consume directly from its buffer.

Clients that can receive data at three times the video consumption rate can use an
option of the protocol called extra tapping. Extra tapping allows clients to tap data from
any stream on the VOD server, and not just from complete streams. Fig. 2 shows some
sample client requests. As client a is the first client, it is serviced by a complete stream,
whose duration is equal to the duration D of the video. Since client b arrives minutes
after client a, it can share D – minutes of the complete stream and only requires a full
tap of duration minutes.

tΔ
tΔ

tΔ

III. OUR PROTOCOL

Both chaining and the cooperative protocol require clients capable of sending video data
at the video consumption rate. As a result, they exclude most home-based clients because
these clients typically have upstream bandwidths that are one eighth to one fourth of their
downstream bandwidths. While these clients might be able to download video data at
twice their video consumption rate, they might only be able to forward video data at one
fourth to one half of that rate.

We wanted to develop a video distribution protocol that allowed clients to participate in
the video distribution process even if they could only retransmit data at a fraction the
video consumption rate. We thus assumed that:

1. Clients would be able to receive video data at twice their video consumption rate;
2. Clients would only be able to forward video data at a rate equal to a fraction α of

the same video consumption rate;
3. Clients would not have to forward video data after they have finished watching that

video;

From serverClient a

Tapping

Client b

From b

Client c

From aΔt

Δt’

Tapping

From server

From server

From a

Fig. 3. How the full tap streams are distributed by the server and the previous clients.

4. Clients should have enough buffer space to store the previously viewed portion of
the video they are watching until they have finished watching it.

As we can see, our protocol makes few demands on the transmission capabilities of the
client hardware. In contrast, it requires client buffers capable of storing an entire video,
that is, several gigabytes of compressed video data. Two factors motivated this choice.

 5

First, the diminishing cost of every kind of storage makes this requirement less onerous
today than it would have been a few years ago. Second, we expected many clients to
keep the previously viewed portion of the video they are watching in their buffer in order
to provide the equivalent of a VCR rewind feature.

Our protocol is a fairly straightforward implementation of stream tapping without
extra tapping as extra tapping would have required clients to be able to receive videos at
three times the video consumption rate. It only differs from the original stream tapping
protocol in the way it handles tap streams. While tap streams originally were the sole
responsibility of the server, this task is now shared by the server and the previous client.
Consider two consecutive requests for a video of duration D. Let Τc denote the time
elapsed since the start of the last complete stream and Δt the time interval between the
two requests:
1. If Τc ≥ D, the two requests do not overlap and the second client cannot tap any data

from the last complete stream. As in the original stream tapping protocol, the server
will then start a new complete stream.

2. If Τc < D, there is an overlap between the current request and the last complete
stream. As in the original stream tapping protocol, the server will then evaluate
whether it would be more advantageous to
keep tapping from the last complete stream or to start a new one. If the server decides
to keep tapping from the last complete stream, it will have to provide the second
client with a full tap stream of duration Τc. Two alternatives must now be considered:
a. If Τc ≤ D – Δt, the previous client will provide a fraction α of the full tap stream

and the server the remaining 1 – α fraction.
b. If Τc > D – Δt, the previous client will finish watching the video before being able

to transmit all its share of the full tap stream and the previous client will only be
able to transmit a fraction cTtD /) - (Δα of the full tap stream with the server
transmitting the remainder of the stream.

If the video is long enough, the new request is likely to overlap with more than one
previous request. We propose to harness the available bandwidth of the clients that
issued these requests in order to further reduce the workload of the server. The
contributions of these clients will be subject to two restrictions. First, upstream
bandwidth restrictions prevent any client to upload data for two different clients at the
same time. Second, we will never require a client to transmit video data after the client
has finished watching the video.

Consider for instance how the protocol would handle the three requests displayed in
Fig. 3. The first request to the video will be entirely serviced by a complete stream
coming from the server. The second request will get the last D – Δt minutes of the video
by tapping client a’s complete stream and the first Δt minutes from a full tap stream of
duration Δt. A fraction α of this stream will be sent by customer a and the remaining 1 –
 α fraction will come from the server. Assuming that the server decides not to start a new
complete stream for customer c, that customer would get:
1. The last D – (Δt + Δt’) minutes of the video by tapping client a’s complete stream;
2. A fraction α of the first D – (Δt + Δt’) minutes of the video from a tap stream sent by

customer a; this tap stream will end when customer a will finish watching the video
D – (Δt + Δt’) minutes after the arrival of customer c;

 6

3. A fraction α of the first D – Δt’ minutes of the video from a tap stream sent by
customer b; this tap stream will end when customer b will finish watching the video
D – Δt’ minutes after the arrival of customer c;

4. The remaining portion of the first Δt + Δt’ minutes of the video from the server.
One last issue to consider is when to halt tapping from the current complete stream

and start a new one. To achieve this goal, our protocol keeps track of the minimum
average request service time of all requests sharing the same complete stream. Before
adding a new request to a group, it computes what would be the new average request
service time of the group if the new request was added to the group. Should this new
average request service time be lesser than or equal to the minimum average request
service time of the group, our protocol adds the new request to the group; otherwise, it
starts a new group. This criterion is similar but not identical to that used by Carter and
Long [1, 2].

A. Handling Client Failures

To operate correctly, our protocol requires all clients to forward video data to the next
customers for the same video. Any client failure will deprive all subsequent customers
from their video data.

There is a simple solution to the problem. Let us return to the scenario of Fig. 3
where client c receives most of its tap stream from clients a and b while client b receives

0
1
2
3
4
5
6
7
8
9

10

1 10 100 1000
Requests/hour

B
an

dw
id

th
 (c

ha
nn

el
s)

New ST α=0

Stream Tapping

New ST α=0.25

New ST α=0.5

Fig. 4. Server bandwidth requirements of the new stream tapping protocol.

almost half of its tap stream from client a. Any failure of either client a or client b would
immediately affect the correct flow of data to client c. A failure of client a will require
the server to take over the role of client a and send the missing video data to clients b and
c. A failure of client b would have less impact on the server workload as it would also
free client a from its obligation to send client b a fraction of its tap stream, thus freeing
enough upstream bandwidth to let client a take over the role of client b and send most of
the missing video data to client c. Making the protocol fault-tolerant will thus require the
server to keep track of which client is sending video data to each client.

 7

IV. PERFORMANCE EVALUATION

Fig. 4 displays the server bandwidth requirements of our new stream tapping protocol for
selected values of α and request arrival rates varying between one and one thousand
requests per hour. All bandwidths are expressed in multiples of the video consumption
rates. We assumed that the server was broadcasting a two-hour video and that request
arrivals could be modeled by a Poisson process.

In addition, the dotted line represents the server bandwidth requirements of the
original stream tapping protocol with extra tapping. Let us observe that the comparison
between the two protocols is not totally fair since extra tapping requires clients capable of
receiving video data at three times the video consumption rate, while our protocol only
requires clients capable of receiving video data at two times that rate.

As we can see, our new stream tapping protocol outperforms conventional stream
tapping even when clients can only forward data at one fourth of the video consumption
rate, that is, when α= 0.25. These results are much better than those of an earlier version
of the protocol that would not allow clients to receive video data from more than one
client [3].

This excellent performance comes however at a stiff price. As seen on Fig. 5, the
network bandwidth requirements of our stream tapping protocol increase much more
rapidly than those of the original stream tapping protocol when the client request arrival
rate exceeds ten requests per hour. This phenomenon can be explained in part by the fact
that our protocol does not allow extra tapping. A more important factor is the way the
server decides when to start a new complete stream. Since the clients handle

most of the tap streams, adding extra requests to any existing group has a negligible
impact on the server workload. As a result, the server will not start a new complete

0
100
200
300
400
500
600
700
800
900

1000

1 10 100 1000
Requests/hour

B
an

dw
id

th
 (c

ha
nn

el
s)

New ST α=0.5

New ST α=0.25

New ST α=0

Stream Tapping

Fig. 5. Network bandwidth requirements of the new stream tapping protocol.

stream before the end of the previous one. Thus the average duration of a tap stream is
equal to half the duration of the video and the average network bandwidth is roughly
equal to one half the bandwidth required by a unicast scheme.

A simplistic solution to this problem would be to limit the size of the tap streams to a
fraction �max of the duration of the video. This would reduce the average duration of
these streams and proportionally reduce the network bandwidth. This solution would
however affect the performance of the protocol at low arrival rates, where long tap
streams are the norm. Having investigated several other options, we found out that the

 8

best way to limit the growth of the network bandwidth was to limit the size of the tap
streams at high arrival rates. We did not want to complicate the design of the server by
requiring it to maintain some moving average of the request arrival rates for each video.
We decided instead to use as threshold the number of clients sharing the same complete
stream and force the server to start a new complete stream whenever (a) the size of the
tap stream would otherwise exceed a fraction �max of the duration of the video and (b)
more than Nmax requests were already sharing the current complete stream.

Fig. 6 and 7 display the impact of this modification to the server and network
bandwidth of our protocol. We considered clients capable of uploading data at one-
fourth the video consumption rate and set our �max to 0.25. Each individual curve
corresponds to a different value of Nmax. We see that limiting the tap stream length to one
fourth of the video duration reduces by a factor of four the network bandwidth of the
protocol while increasing the server bandwidth at the highest arrival rates by the same
factor. Even under these conditions the server bandwidth remains well below that of the
original stream tapping protocol.

0
1
2
3
4
5
6
7
8
9

10

1 10 100 1000
Requests/hour

B
an

dw
id

th
 (c

ha
nn

el
s)

Nmax = 10
Nmax = 100
No limit

Fig. 6. Server bandwidth requirements of the protocol for

α = 0.25 and βmax = 0.25.

0
100
200
300
400
500
600
700
800
900

1000

1 10 100 1000
Requests/hour

B
an

dw
id

th
 (c

ha
nn

el
s) No limit

Nmax = 100
Nmax = 10

Fig. 7. Network bandwidth requirements of the protocol for α = 0.25 and βmax = 0.25.

V. CONCLUSIONS

We have presented a stream tapping protocol that involves clients in the video
distribution process. Our protocol is tailored to environments where client machines are
able to download video data at twice the video consumption rate but can only forward

 9

video data at a fourth to a half of that rate. We observed that our technique achieved a
dramatic reduction of the server workload at medium to high request arrival rates but also
resulted in much higher network bandwidth consumptions. These increases can however
be controlled by requiring the server to restart complete streams at some specific
intervals.

References
[1] Carter, S. W. and D. D. E. Long. Improving video-on-demand server efficiency through

stream tapping. Proc. 5th ICCCN Conf., pp. 200–207, Sep. 1997.
[2] Pâris, J.-F. A Cooperative Distribution Protocol for Video-on-Demand. Proc. 6th Mexican

Int’l Conf. on Computer Science, pp. 240–246., Sep. 2005.
[3] Pâris, J.-F. Using Available Client Bandwidth to Reduce the Distribution Costs of Video-on-

Demand Services. Proc. 7th WDAS Workshop, Jan. 2006.
[4] Sheu, S., K. A. Hua, and W. Tavanapong. Chaining: A Generalized Batching Technique for

Video-on-Demand Systems. Proc. ICMS Conf., pp. 110-117, June 1997.

	Abstract
	Abstract
	I. INTRODUCTION
	II. PREVIOUS WORK
	III. OUR PROTOCOL
	A. Handling Client Failures
	IV. PERFORMANCE EVALUATION
	V. CONCLUSIONS

