

THE REPRESENTATION AND INFERENCES

OF HIERARCHIES

Kam-Hoi Cheng

Computer Science Department

University of Houston
Houston, TX, 77204, USA

http://www.cs.uh.edu

UH-CS-05-21
September 8, 2005

Keywords: Artificial Intelligence, Knowledge Representation, Hierarchy, Object-
Oriented, Category.

Abstract

Hierarchy is an important relationship among knowledge. We identify the basic
components and the common functionalities of hierarchies, develop a new class that
provides the solution, and use it in implementing the different components and
capabilities of a category. First, we use it to store the generalization/specialization
relationships among knowledge such as data types, polygons, and categories. Then using
the transitive property of generalization, a function is implemented to infer whether a
given object is a specific category. We also develop another new class to represent
inheritable knowledge such as attributes and properties. Finally, we use it to represent
the Geographic containment hierarchy which contains two inter-related hierarchies, one
in the category level, and the other in the object level. The design of the system is done
using Object-Oriented paradigms, and the system implemented in C++.

.

The Representation and Inferences of Hierarchies

Kam-Hoi Cheng
Computer Science Department

University of Houston
Houston, Texas 77204-3010

Abstract

 Hierarchy is an important relationship among knowledge. We identify the basic
components and the common functionalities of hierarchies, develop a new class that
provides the solution, and use it in implementing the different components and
capabilities of a category. First, we use it to store the generalization/specialization
relationships among knowledge such as data types, polygons, and categories. Then using
the transitive property of generalization, a function is implemented to infer whether a
given object is a specific category. We also develop another new class to represent
inheritable knowledge such as attributes and properties. Finally, we use it to represent
the Geographic containment hierarchy which contains two inter-related hierarchies, one
in the category level, and the other in the object level. The design of the system is done
using Object-Oriented paradigms, and the system implemented in C++.

Keywords: Artificial Intelligence, Knowledge Representation, Hierarchy, Object-
Oriented, Category.

1. Introduction

 The area of Artificial Intelligence is very broad, and recently a comprehensive
treatment of the subject matter using the rational agent approach is presented in
[RUSS03]. The rational agent approach is concerned with systems that act rationally.
An important first step to act rationally is to make the correct inference when needed. To
accomplish that, a system needs to possess the necessary domain knowledge together
with the capability to reason logically. The solution detailed in [RUSS03] is to use first
order logic to represent the domain knowledge. A large scale effort in providing a
knowledge base for common sense knowledge using first order logic can be found in
[LENA90] and {LENA95]. One advantage for first order logic is the separation of the
representation of the domain knowledge from the inference logic. Another important
advantage is its completeness in inference power, in other words, any statements that can
be inferred can be proved. It is exactly this great inference power that makes the speed of
inference not very fast, even for some simple and well-understood relationships. One

such relationship is the hierarchical relationship among knowledge. Semantic networks
[MINS68] are systems specially designed for organizing and reasoning with categories
that are related in a hierarchy. These systems provide fast inferences because of its
specially designed data structure. In this paper, we present an implementation of the
hierarchical relationship. Our solution is similar to semantic networks except that
knowledge is represented by objects. Besides keeping the efficiency and simplicity of the
inference process offered by semantic networks, our solution has the added advantages of
an Object-Oriented solution. One such advantage is the reusability of the
implementation. Any where a hierarchical relationship is needed; its structure and
functionalities may be provided by simply including an object of the newly developed
class. The project, A Learning Program System (ALPS) [CHEN00], is to develop a
system that mimics human learning. It is based on a simple building block premise that
complicated knowledge is built on simpler knowledge. To learn complex knowledge, we
need to learn simpler knowledge first, then using those to compose the complicated
knowledge. What we mean by learning a specific kind of knowledge involves the
identification of its important component knowledge, and the development of the
functionalities needed to maintain and to use knowledge of that kind. Knowledge object
may be composed by including a specific instance of each of its components. The
development of a complex knowledge kind such as category is therefore decomposed into
simpler sub-problems of providing the solution to each of its knowledge component. In
addition, using hierarchies and polymorphism for each component, Object-Oriented
solution allows mix-and-match of the different components and simpler future extensions
of any component.

 The rest of the paper is organized as follows. Section 2 identifies the common
information and functionalities of maintaining hierarchies, and provides a brief
explanation of the class that implements the solution. The usage of this newly developed
class in implementing the different components and capabilities of a category is presented
in the next several sections. Section 3 describes how easily we may use this new class to
represent the generalization/specialization hierarchies in different kinds of knowledge,
such as data types, polygons, and categories. It also explains how to use a generalization
hierarchy object to implement inference functions for two different situations. Section 4
describes how we use a hierarchy object to develop another new class to represent
inheritable knowledge such as attributes, formulae, and properties. This class greatly
reduces the amount of teaching if such inheritable knowledge were taught to belong to
the parent category instead of many children categories. Section 5 describes how we use
the hierarchy class to represent the Geographical containment hierarchy which contains
two inter-related hierarchies, one in the abstraction level, and the other in the object level
[JING04]. Finally, section 6 presents the conclusion and some general discussion.

2. The Hierarchy Class

 In ALPS, the learning program is responsible to maintain knowledge objects. Each
knowledge object has multiple responsibilities. One such responsibility is to maintain the
knowledge’s parent-child relationship in a knowledge hierarchy. The information and

functionalities common to hierarchies are abstracted and implemented as a class. When a
knowledge object is involved in a hierarchy, an object of this newly developed hierarchy
class will be added to it, and it is known as the owner of the hierarchy object. We
observed that knowledge may be involved in multiple hierarchies, so a knowledge object
may contain multiple hierarchy objects. To locate the correct hierarchy object, a unique
name is used to identify the involved hierarchy. We also observed that the hierarchy is
accessed through its owner knowledge, and access may be from any position in the
hierarchy, not just from the root knowledge. In addition, both its ancestors and
descendants should all be accessible. Finally, it is quite possible that a knowledge object
may have multiple parents in a hierarchy.

 From the above discussion, the common information needed includes the name of the
involved hierarchy, its children, parents, and the owner knowledge. The inclusion of
pointers for both parents and children allows easy traversals up and down the hierarchy.
The functions common to the hierarchies may be divided into two categories. All
functions assume the action to be performed related to a host hierarchy object. The first
category includes the basic functions needed to build the hierarchies in an incremental
manner. These include functions to add, change, and remove a parent. They also include
a function to insert in between a parent-child relationship to allow a refinement of the
hierarchy. We decided not to include those functions to update the child since they may
be accomplished by those parent functions accessed from the child node. The second
category includes those functions that allow the program to probe the information about
the hierarchy. These include functions to find parent, ancestors, children, and
descendants. They also include auxiliary functions to determine if the host object is
related to a specific knowledge instance as a parent, child, ancestor, or descendent. The
details of these functions may be found in [JING04].

 Now given this hierarchy class and its functionalities, whenever a knowledge object is
taught to be involved in a hierarchy, an object of this hierarchy class is added to the
knowledge object. The result is an overlay of the objects of this hierarchy class onto their
owner knowledge objects. Figure 1 shows some knowledge objects before their
relationships in a hierarchy were taught. Figure 2 shows those objects after their
hierarchical relationships were taught. The hierarchy objects of a knowledge hierarchy
are stored inside their owners’ knowledge. Note that the pointers are linking the objects
of the hierarchy class, not their owners. The connection is bi-directional, i.e., both
children and parent pointers are maintained, and parent is assumed to be above its
children in the figure. Figure 3 shows that some knowledge is also involved in a different
hierarchy. Objects of the hierarchy class for the different hierarchy are represented by
symbols of a different shape.

3. The Generalization/Specialization Hierarchy

 First, we use objects of this hierarchy class to represent the
generalization/specialization relations among knowledge. Generalization allows human
to abstract the common properties of many ideas, and deal with them at a higher but

simpler level. Three earlier problems involving hierarchies includes data types [SRIN99]
[KAPO00], categories [ZHAN00], and polygons [NAND01] [TANN01], respectively.
The specialized codes for maintaining their respective hierarchies are now each replaced
by a single “is-a” hierarchy object.

 Next, we use the generalization hierarchy to implement an inference function in the
category class to determine whether a given input is a specific category. For example,
human “is-a” animal but not a plant. The inference can be made simply and efficiently
because of the data structures embedded in the solution. Since generalization is
transitive, all the function needs to do is to follow the parent pointers to search for its
ancestors. The correct inference can be made as long as the hierarchical knowledge has
been provided to the program.

 The inference problem, however, is not limited to categories, but may involve objects
of a category. These objects may possess many different aspects, each have its own
generalization hierarchy. For example, consider an object of the human category, say
Jack. Jack may belong to one human race and have a specific occupation. We may now
teach the learning program both the human race and occupation hierarchies, and that
human objects may belong to one human race and have an occupation. Suppose we
taught the program that Jack is a white Civil Engineer. By using the above-mentioned
function that we developed for the category class, obviously our program is able to infer
that white is a human race, and Civil Engineer is an occupation. However, one would
only want to infer that Jack is white or an Engineer, but not a human race, nor an
occupation. To prevent erroneous conclusions such as Jack is an occupation, another
inference function is added to the object class. This function is very similar to that of the
category class except that it stops using the transitive law at the last level.

4. Inheritable Knowledge

 Another responsibility of the category class is to maintain inheritable knowledge. For
example, attributes of a category should be inheritable from its generalization categories.
Similarly, knowledge such as properties and formulae are also inheritable knowledge in
polygons. Inheritable knowledge allows a teacher to avoid unnecessary teaching, which
can be excessive. For example, it is enough to provide the knowledge base that animal
has attribute weight, instead of repeating the same fact in hundreds of thousands of
different kinds of animals. Without the inheritable capability, the original class to store
all properties of a polygon or all attributes of a category is basically the dictionary
abstract data type. A dictionary has three basic functions, namely, insert, delete, and
search; and it is easily implemented using the map library class of C++. To add the
inheritable capability, we create a new class that includes an object of the original
dictionary class, plus the specific hierarchy object that is responsible for inheritance,
namely, the “is-a” hierarchy object. To find all inheritable knowledge, the search
function not only has to look locally, but also need to search its ancestor knowledge
through the hierarchy object. For example, all properties of a rectangle include not only
the properties stored locally, but also those of its ancestor knowledge, such as

parallelogram, quadrilateral, etc. We may now reuse this inheritable capability simply by
using an object instance of this new class.

5. The Geographical Containment Hierarchy

 A different kind of hierarchies is the containment hierarchy. One such hierarchy that
is specifically dealt with in this paper is the Geographical knowledge of different
countries. For example, the country USA contains states, each state contains counties,
each county contains cities, etc. On the other hand, some other countries, such as Canada
and China, contain provinces but not states, and provinces contain cities and villages. In
analyzing these containment hierarchies, we observed a number of problems that we need
to address. One problem is the non-uniqueness in the names of objects, even for objects
of the same category. Many cities have the same name, for example, city Pasadena exists
in multiple states such as California and Texas. The street, Main, is in almost all cities of
America. This problem is important because there is a need to locate the right knowledge
object. Luckily, within its own context, there is only one such city or street. Our solution
will exploit this context information to locate the intended object. Another problem that
we observed is that there are two inter-related hierarchies. One hierarchy is in the
category level, while the other is in the object level. We also observed that the existence
of the hierarchy in the object level depends on the existence of the category hierarchy. In
other words, in order for an object to contain another object, there must be a hierarchical
relationship between the categories of these two objects. For example, country USA can
contain state Texas only if country is known to contain state. However, this dependency
is only permissive, i.e., not every object has to contain objects of all permitted categories.
For example, country contains state, province and territory means that some countries
may contain states, while other countries may contain provinces and territories. The
object, country Canada, can contain both provinces and territories, which is allowed in
the category level. To prohibit a hierarchical relationship that exists in the category level,
one solution is to apply this knowledge explicitly to an object. However, this is rather
expensive. An alternative is to assume by default that it is prohibited, which may provide
an incorrect inference due to the lack of knowledge. We will adopt the first approach in
our solution.

 The solution to the above containment hierarchy problem is rather simple. First, to
represent the containment hierarchy in the category level, a containment hierarchy object
is added to each category. This hierarchy object is simply an object of the newly created
hierarchy class whose hierarchy name is containment. Similarly, a containment hierarchy
object is needed in the objects of the category. The same functions to maintain the
generalization hierarchy of categories may be used to add the containment hierarchy,
except with a different hierarchy name, containment. As for the object level, new
functions are added to the object class to check the existence of the permissive hierarchy
in the category level, and also to check the prohibition for individual objects. To deal
with the non-unique names problem, several search functions have been implemented.
All use the idea of searching for a knowledge object within a context. For example, the
argument of one such function is a sequence of two arguments. To locate the “main

street” of city Pasadena of state Texas in USA, the argument is the sequence: street main,
city Pasadena, state Texas, country USA. As a result, the “main street” of Pasadena of
California will not be mistakenly located. Finally, given a knowledge object, we
implement another function to obtain the ancestor object in the containment hierarchy of
a specific category. For example, given the Houston of Texas object, the function is able
to find which state, country, continent, or planet it is contained in. The implementation
of all these functions basically searches the containment hierarchy using the object of the
newly developed hierarchy class.

6. Conclusion

 Category and its associated object classes are two of the most complicated kinds of
knowledge that the learning program has to maintain. Each has a number of different
responsibilities, and many of them are related to hierarchies. In this paper, we have
described how different kinds of hierarchies were maintained in the learning program of
the ALPS project. Two useful classes have been developed. One may be used by
knowledge that is involved in hierarchies, the other by knowledge that contained
inheritable knowledge. In addition, several useful functions have been implemented in
the category and the object classes, respectively.

 Systems developed using Object-Oriented approach has the normal advantages of
reusability, maintainability, and extensibility. Using object composition technique to
represent knowledge allows independent and incremental development of each
component. It also allows many variations for the same kind of knowledge by mixing
different variations of each component. Finally, using objects to represent knowledge
allows all knowledge about a specific piece of knowledge to be stored in one single place,
instead of spreading them all over the knowledge base in hundreds of thousands of
separate predicates and functions as in first order logic.

Acknowledgements

 The author would like to thank C. Jing in implementing the codes for the hierarchy
class and the Geographical containment hierarchy. In addition, the author would like to
thank the following Masters students: I. Kapoor, A. Nandigam, V. Srinivasan, U. Tanna,
and L. Zhang in implementing earlier versions of codes in handling hierarchies in various
kinds of knowledge.

Reference

[CHEN00] K-H Cheng, An Object-Oriented Approach to Machine Learning, Proc.
WSES International Conference on Artificial Intelligence, June 2000, pp. 487-492.

[JING04] C Jing, An Object-Oriented Hierarchy Learning System, Master Thesis,
Computer Science Department, University of Houston, May 2004.

[KAPO00] I. Kapoor, A Learning Subsystem for Operators of Basic Data Types, Master
Thesis. Computer Science Department, University of Houston, May 2000.

[LENA90] D.B. Lenat and R.V. Guha, Building Large Knowledge-Based Systems:
Representation and Inference in the CYC Project, Addison-Wesley, Reading,
Massachusetts, 1990.

[LENA95] D.B. Lenat, Cyc: A large-scale investment in knowledge infrastructure,
Communications of the ACM, 38(11), 1995.

[MINS68] M.L.Minsky (Ed.), Semantic Information Processing, MIT Press, Cambridge,
Massachusetts, 1968.

[NAND01] A. Nandigam, A Subsystem for Learning Properties of Two-Dimensional
Polygons, Master Thesis, Computer Science Department, University of Houston, May
2001.

[RUSS03] S. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, 2nd
Edition, Prentice Hall, 2003.

[SRIN99] V. Srinivasan, An Object-Oriented Learning Subsystem that Learns Fractions
and Complex Numbers, Master Thesis, Computer Science Department, University of
Houston, Dec. 1999.

[TANN01] U. Tanna, Learning Parameters of Two-dimensional Polygons, Master
Thesis, Computer Science Department, University of Houston, May 2001.

[ZHAN00] L. Zhang, A Subsystem to Maintain Class Hierarchies, Master Thesis,
Computer Science Department, University of Houston, May 2000.

Fig. 1 Knowledge objects with no known hierarchical relationships.

Fig. 2 Knowledge objects with known hierarchical relationships in a hierarchy.

 Fig. 3 Some knowledge is involved in two different hierarchies.

	Abstract

