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  Abstract  

Freshness is the central issue of authentication in communication security protocols. The attacker can let an 
honest principal accept old message components sent in previous sessions. This kind of attack, called old 
message attack, is common and simple for the attacker, but nontrivial to check. We define a model to 
describe the honest principals’ requirement, called labeled strand, which can work as a framework for 
reasoning about general kind of attacks. We also define a logic that includes the rules to describe the labeled 
strand, and the rules currently designed for reasoning about old message attack. This logic is sound and 
complete for checking old message attacks, and it has polynomial time implementation. The algorithm is 
simply to compute the closure of the rules and has efficient features.  

 

1 Research partially supported by NSF grant CCF 0306475 



 

 

1 

A Natural Logic for Checking Old Message 
Attacks1 

Zhiyao Liang            Rakesh M. Verma  

Abstract  

Freshness is the central issue of authentication in communication security protocols. The attacker can let an honest 
principal accept old message components sent in previous sessions. This kind of attack, called old message attack, is 
common and simple for the attacker, but nontrivial to check. We define a model to describe the honest principals’ 
requirement, called labeled strand, which can work as a framework for reasoning about general kind of attacks. We 
also define a logic that includes the rules to describe the labeled strand, and the rules currently designed for reasoning 
about old message attack. This logic is sound and complete for checking old message attacks, and it has polynomial 
time implementation. The algorithm is simply to compute the closure of the rules and has efficient features 

 
Index Terms  

Security, Protocol, Authentication, Freshness, Logic, Old message, Completeness, Soundness, Polynomial time 

1. Introduction 
Security of communication protocols is important in this age when computer communication is ubiquitous. An 
important research direction in verifying communication protocols is checking attacks while assuming perfect 
encryption. The attacker can work as a middleman to play with different sessions and different principals. This 
problem is surprisingly hard. The simple and famous attack on the Needham-Schroeder protocol was found 17 years 
after publication by Lowe [21, 16, 17]. Researches have shown that to verify the security of communication protocols 
in general is undecidable [13, 9], but for finite sessions it is decidable and NP-complete [2, 25]. Many researchers 
follow the attacker model developed by Dolev and Yao [8].  There are approaches that use general verification tools, 
for example, Paulson uses the theorem prover Isabelle [26]. General model checkers are also used such as FDR [17, 15] 
and Murϕ [14]. Automata are also used as a verification theoretic tool [20]. There are also special purpose model 
checkers to verify security protocols, such as Athena [28, 29], Brutus [6], and OFMC [3]. NRL protocol analyzer is 
written in Prolog as special-purpose tool [18]. The problem of checking attacks can also be reduced to solving 
constraints [19]. The common feature of these approaches is to enumerate all possible behaviors of the attacker 
(interleaving and constructing messages) to find the scenarios in which the attacker can succeed. 

1.1  Motivation 1: Complex Freshness Tracking 
Freshness is the central and fundamental issue in authentication of communicating protocols [11]. The purpose of 
using the fresh nonces in protocols is to let a principal A make sure that the other principals A is talking with are active 
in the current session and that A will not receive old messages. The basic form of freshness challenge from a principal 
A is to let A to send out a message containing some fresh items, then A expects to receive the fresh items back on the 
reply. However freshness tracking can be complex and nontrivial to understand without mechanical help. The 
following two protocols are examples to show this phenomenon (notations are explained in section 2).  

Protocol 1: In this protocol X, M, NA and W are all supposed to be fresh message components. Why A and B will 
only accept fresh components?  
1. A → B: A  
2. B → A: {X, M}→KA 
3. A → B: {X, NA}

→KB 
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4. B → A: NA, {M, W}

→KA 
Protocol 2: This is the well known Yahalom protocol (cited in [4] as personal communication 1988, due to 

Yahalom). Why A and B can only accept fresh components (if they are supposed to be fresh) while S can accept old 
NA and NB? Then if the second message changes to� 2. B → S: B, {A, NA}

↔KBS, {B, NB}
↔KBS, A can accept 

an old NB.  
1. A → B: A, NA 
2. B → S: B, {A, NA, NB}

↔KBS 
3. S → A: {B, KAB, NA, NB}

↔KAS, {A, KAB}
↔KBS 

4. A → B: {A, KAB}
↔KBS, {NB}

↔KAS 
In the above examples we are not considering the trick cases when a sophisticated attacker tries to interleave 

messages of parallel sessions and steal secrecies then decrypt messages. We are considering the most intuitive cases 
where the attacker just sends an old message component in the same position in some old session as a new one. And the 
attacker does not need to break encryptions, he can use the whole encrypted terms as a building blocks to build the 
faked messages. 

1.2 Definition of OMA - Old Message Attack 
We define Old Message Attack (OMA) by describing the capability and incapability of the attacker.  
• The attacker only breaks a message by separating the elements of the unencrypted lists in the message. The attacker 
does not do decryption. If a list contains another list, the attacker can continue to break the inside list. The smallest 
term that the attacker can achieve by breaking a message (as a list) is called a block. For example, in the message of 
[A, NA, [X, Y], {G, H}

→KB ], there are 5 blocks: A, NA, X, Y, and {G, H}→KB. Positions can be assigned 
to these 5 blocks sequentially. 
• A block is the smallest building unit for the attacker to construct a fake message. The attacker can construct a fake 
message by using some blocks sent in the previous sessions together with some new blocks. If several old blocks are 
used together in a message, then those old blocks may come from different old sessions.  
• The new blocks can not change its supposed position in the faked message. For example if the 5th block in the new 
message 3 can only be used by the attacker as the 5th block in the faked message 3. 
• Similarly, the old block used by the attacker must be in the same position in the protocol as the new one. E.g., the 
5th block of an old message 3 can only be used as the 5th block of the faked message 3.  
• The old session where the old block comes from must have the participants playing the same roles as in the new 
session. For example, if an old block is used by the attacker in the second message sent from A to B in the new 
session, then in the old message, which must be a second message, where the old block comes from, the sender is A 
and the receiver is B. 
• There are no parallel current sessions. The only concepts about time epochs are the many old sessions, and the 
single new and current session. So the attacker can not interleave messages of different current parallel sessions. 
• The attacker can not be a regular participant in the protocol. 
• The attacker can intercept any messages sent by regular principals. And the attacker can possibly prevent a regular 
principal from receiving a message sent to it. 
• A regular principal needs to finish its role (all the sending and receiving tasks, or its strand, defined later) defined in 
the protocol in order to finally accept any value. (This property is common for any kind of authentication attacks. For 
secrecy attack, the attacker can steal the secrecy and does not need to wait for the regular principal to finish its role in 
the current session.) 
• If a regular principal P receives and sees a bit string that P can not recognize or understand, e.g., an encrypted term 
that P can not decrypt, P will not care about it. So if P receives such bit strings and they are supposed to be equal or 
different, P will not bother to do this kind of checking. 
• If in the protocol, a regular principal P accepts (receives and sees) an old atomic term X that supposed to be fresh 
(defined as SDC in section 2.1), we can say that there is an OMA of X to P. 

Observations. In OMA, encryption using some secret keys is not important to show the identification, since the 
attacker will not try to construct an encryption, and the old blocks in the fake message will come from the supposed 
sender. The only thing matters is whether the block is fresh or not. If a principal receives a fresh block, then the block 
must come from the supposed honest sender in the current session. In OMA, freshness (of a block) means honesty (sent 
by the supposed sender in the current session). In an old block, nothing is fresh. And a block containing a fresh subterm 
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3 
must be a fresh block. A fresh block may contain some old subterms. 

1.3 Motivation 2: OMA Can Be Severe 
OMA will cause honest principals to accept faked values. Further more, the attacker can take the advantage of the 
weakness of the protocol to launch Denial-Of-Service (DOS) attacks by repeatedly sending old messages components. 
For example, in Yahalom protocol, the server will always accept the second message and do the computation, no 
matter the message is honest or faked. 

1.4 Motivation 3: OMA is Nontrivial to Check 
Even with current successful algorithms, OMA can be nontrivial to check. The reason is that those algorithms usually 
will enumerate all of the possible behaviors of the attacker.  In OMA, when the attacker tries to construct a fake 
message, for each block in the message, the attacker can have two choices: using the honest new block sent in the 
current session, or the old one in some old session.  Suppose a message has N blocks, then there can be 2N possible 
ways. The exponential number of possibilities will be more severe for a long message which is a list of many items. 

Consider the algorithms of MS constraints [19] and Athena [29] as examples. Suppose MS constraints is 
customized for OMA, so there is only one interleaving to consider: messages of the new session after the messages of 
the old session (only one old session needs to be considered, proved in lemma 1), and only pair rule and unification rule 
is used. Every time the unification rule is applied, there can be two terms chosen from the knowledge in the history to 
do the unification, the old block and the new block. Similarly for Athena, suppose Athena has been customized with 
OMA such that there are only two sets of regular strands included in the state, the set of strands from an old session, 
and a set of strands from the current session, then in the next state function, a goal which is a block, can have two 
possible goal bindings, one is the old block sent from an R penetrator strand, the other is the new block also sent from 
an R penetrator strand. There can be many guesses and attempts before the result can be computed, especially for the 
cases where the freshness challenge is checked later than a message component is received. For example, in Protocol 1, 
A will not know X and M are fresh until message 4. If we need to check the possible OMA for different principals, then 
MS constraints and Athena will need to run separately for each principal with different inputs of formulas or goals, 
which will cost more computation time.  

1.5 Motivation 4: Belief Logic 
BAN logic [4] was published by Burrows, Abadi and Needham in 1989, which is the influential work among the first 
attempts to formalize the description and analysis of authentication protocols. BAN logic takes the form of beliefs in 
the sense like every regular principal is an intelligent party and will do analysis and checking of the messages. This can 
naturally describe our intuition. Many papers are published in the 90s following BAN logic’s style [12, 1, 5, 31, 30, 10, 
27]. What seems to be missing is a logic that can integrate both the natural intuitions to describe the behavior of the real 
world of protocol executions, and some rigor computation model to achieve preciseness and confidence. 

However, BAN logic has been criticized in the literature [23, 24]. And we do not consider BAN logic is a very 
practical solution mainly due to the following reasons: 
1) BAN logic has to generate the idealized version of the protocol before it can be analyzed. But the way to generate 
the idealized version depends on peoples understanding and intuition of the meaning of the protocol, which can 
sometimes be subjective with different people and vague to define. The following is the simplified version of Yahalom 
[18] (Protocol 2), based on its idealized version.  

Protocol 3: The simplified version of Yahalom by BAN Logic [4] 
1. A → B: A, NA 
2. B → S: B, NB, {A, NA}

↔KBS 
3. S → A: NB, {B, KAB, NA}

↔KAS, {A, KAB, NB}
↔KBS 

4. A → B: {A, KAB, NB}
↔KBS, {NB}

↔KAB
 

   We can see that KAB is encrypted together with NB in message 3, and forwarded from A to B in message 4, in order 
to show the intuitive meaning of the freshness challenge by B, which is easier to understand than the original Yahalom 
protocol. But the challenge is that how to deal with the cases where the freshness is not obvious to track, such as the 
original version of Yahalom. In stead of change the protocol code for the analysis, we should change the analysis for 
the protocol code. 
2) BAN logic dos not have a computation model to prove its completeness, in terms of power to check attacks, even 
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with those simple attackers. We consider BAN logic is not enough to track freshness. The following example, protocol 
4, is the Needham-Schroeder protocol with shared key [22].  BAN logic needs to have the special assumption that B 
believes KAB is fresh in order to do the reasoning. The authors claim that the reason for this assumption is that the 
designer of the protocol did not realize this assumption, and that has also been criticized by the timestamp paper [7]. 
However, the timestamp paper argues about this problem only in the case when KAB is mysteriously stolen, and that is 
why timestamp is needed. Intuitively KAB has to be fresh to B, because B can verify by the nonce NB that A is active, 
and if A is active A must have verified that KAB is fresh. The excuse in BAN logic paper is not a reasonable one. The 
real reason is that BAN logic does not capture the behavior of the freshness challenge that a term is verified fresh later 
than the time when the term is received. Tracking freshness is the key motivation for BAN logic, on the first page of the 
paper [4]: “…, and it is particularly necessary to take precautions against confusion caused by the reissue of old 
messages. ”. But BAN logic is not powerful enough for freshness tracking. 

Protocol 4:  
1. A → S: A, B, NA  
2. S → A: {NA, B, KAB,{KAB, A}

↔KBS}
↔KAS 

3. A → B: {KAB, A}
↔KBS 

4. B → A: {NB}
↔KAB 

5. A → B: {NB – 1}
↔KAB  

We like the approaches of belief logics, which is based on intuition (intuition can lead to simple solutions), and they 
can describe naturally what happens in the real world. We tackle the first weakness of BAN logic by defining a logic 
directly based on the protocol code. We tackle the second weakness by integrating the strand model [32, 33, 34] in this 
logic, and we build a model called labeled strand based on it. Labeled strand works as the framework of this logic, and 
it supports the proof of soundness and completeness of this logic. BAN logic has the limitation that it assumes simple 
attacking scenarios, no message interleaving is allowed. This is similar to the scenario of OMA. We do not provide the 
ambitious solution in this paper to handle all possible tricky attacks, but concentrate on OMA which is common 
enough to be important and non-trivial enough to be interesting. 

In the following sections, we will describe the behavior of running a protocol in the real world, and the logic rules in 
the logic world. The goal is to reflect the behavior of real world into the logic world correctly and sufficiently, which is 
proved by the soundness and completeness of this paper.  

2.  Modeling a Protocol Run (the real world) 

2.1 Terms and messages. 
A term is defined recursively 
• A character string without internal structure is a term, which can be a principal name, atomic key, nonce, plain text, 
etc. (In this paper, the atomic public key, private key and shared key are represented like KA, KA

-1
, KAB.) 

• [T1, T2, …] is a term, which is a finite list of terms, if T1, T2, … are all terms.  
• If T is a term, then T-1 is a term, which is the reverse key if T is used as a key using the public key encryption 
algorithm. When T is considered as a public key, T-1 is the corresponding private key. Similarly, if T is the private 
key, then T-1 is the corresponding public key. We consider “ -1 ”as a notation, not a structure. We assume T-1-1 is T, and 
a sequence of this tag is always reduced to its normal form.  
• If X and Y are terms, {X}→Y is a term, which is encryption of X using public key encryption with Y as the Key.  
• If X and Y are terms, {X}↔Y is a term, which is the encryption of X using symmetric key encryption with Y as the 
key.  

We assume free term algebra, which means that the only way to construct a term. Every term is reduced to its 
normal form (no repeated decryption and encryption). For example, the only way to achieve the bit string of an 
encryption {X}→Y or {X}→Y  is by encrypting the same X with the same Y. 

Composite key is allowed (which means a key can be any term). This will allow the frame work of this paper to 
deal with more general attacks. No matter the key is atomic or composite, the reasoning in this paper about OMA will 
be the same. 

A message is a term. When a message is a list, usually the top level [ ] is omitted. Also {X, Y, … }→KA means the 
same as {[X, Y, …] }→KA. Same for symmetric key encryption.   

Subterms are defined in the obvious way: 
• T and M are the subterms of [T, M] 



 

 

5 
• X and Y are the subterms of {X}Y 
• X is a subterm of Y, if Y is a subterm of Z.  
• X is a subterm of X. 
A term is a Session Dependent Component (SDC) if its value can be different from session to session. Usually 

public keys and private keys are non SDCs, while nonces and plain text are SDCs. 

2.2 Event and Strand 
Strand [32, 33, 34] has been developed as a model to represent the exact behavior of a principal when running a 
protocol. Athena [28, 29] extended strand and defined semi-bundle which represents a possible run of the protocol. 
An event of a principal is either sending a message or receiving a message. A strand of a principal P is the sequence of 
events that P needs to do, which is defined by the protocol. For example, the strand of A in the Yahalom protocol is 
the following sequence, we use + to represent the sending event, and – for receiving event. 
A’s strand in Yahalom Protocol 
1. + :  A, NA 

3. - :  {B, KAB, NA, NB}
↔KAS, {A, KAB}

↔KBS 
4. + :  {A, KAB}

↔KBS, {NB}
↔KAS 

We say that sending and receiving events are external events. A principal can also have internal events, such as 
comparing and verifying the equivalence of different message components, constructing messages, decryption, and 
so on. The algorithm will represent the internal events naturally. In the following, an event means an external event.  

We assume a principal will do internal events as much as possible after receiving each message and before sending 
every (already constructed) message.  

A term X is originated by P in a message M if P sends out M and X does not occur as a subterm in any earlier 
messages received by P. It is possible that X is originated by P several times in different messages sent by P. This 
definition is different from the one defined [29] to achieve simplicity and efficiency in our algorithm. When a term is 
originated by P, P must know its subterms in order to construct it.  

Before running a session, a principal P has its initial knowledge, which should include all of the terms that the 
principal need to know to construct or decrypt messages. It can include the public keys, its private keys, the 
symmetric keys shared with other principals, the principal names, the SDCs that are generated by P in the current 
session, and so on. P’s initial knowledge is represented a list, called initial (P). 

2.3 Labeled Strand 
Labeled strand is this paper’s extension of the strand model. The extended features include the definition of terms (in the strand 
model, only atomic key is allowed), the explicit recording the locations of terms and the equivalence between terms, and the 
principals’ behavior of sensing terms (newly defined), and seeing terms at different locations.  

2.3.1 locations 
Locations of terms are recorded using the following scheme: 
• The ith message in the protocol, 1 ≤ i, has location 
• If term {X}Y has the location L, then X is located at L.α, and Y is located at L.β. 
• If term [X, Y, Z] has location L, then X has location L.1, Y has location L.2, and Z has the location L.3. The 
lists that are not included in any encryption are fully expanded and then locations are assigned sequentially. For 
example, in [X, [Y, Z], {A}→B], the location for X is 1, Y is 2,  Z is 3, and {A}→B is 4.  
• We say a natural number and a α and a β that appears in a location has length 1. Similarly α.1 has length 2. Because 
of this way of evening the top level nested lists, the block with the locations 1.1.1 and 1.1 will be same. So we can say 
the location of a block will always have length 2. The empty location has length 0. 

Locations can be used in reasoning conveniently:  
• We use a lower case character as a variable to stand for a non-empty location with length 1. For example, i can be 
the value 1, 2, α or β. An upper case character stands for a location with a sequence bits, possible empty. For example 
if i.L strands for the location 1.2.α, then i has the value of 1 and L has the value of 2.α. If L is empty, L.H is the 
same as H.L and H.. 
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• The term located at L.H is a subterm of the one located at L. For example, i.L can be any location of a term in the 
ith message. We can use the notation of term(L) to represent the term located at the location L. To say a term is located 
in a block, we use the notation term(i.j.L), where i.j is the location of the block 
• Two different variables represent that they can represent possibly different values. E.g. term(i.H) == 
term(i.L), H and L are possibly different, but they can also be the same (without the additional specification that 
H ≠ L). But the two terms must be in the same message msgi.  

2.3.2 Equivalence 
The equivalences between terms are recorded using the following scheme: 

• If X is located at location L, term(L)== X. 
• If X is located both at L and H, term(L)==term(H). 
• The equivalence relation is transitive, reflexive and symmetric. 

2.3.3 Sensing and Seeing 
The Sensing and Seeing behavior is defined as the following: 
• A principal P can only sense and see the terms located within the message sent or received by P. 
• A principal P senses a term X at the location L in message M, if P knows or conscious that X is used as the subterm 
at the position L to construct the containing message. In other word, when P does its internal computation, P knows 
that there exists a term (the term is unique, by the free algebra assumption), name it X (according to the protocol), 
which is used as subterm at location L when the message is constructed. Or we can say, P can sense the existence of X 
at L, and P can name it according to the protocol code. 
• Seeing is defined similarly as defined in BAN logic. If a principal P can see a term, then P can repeat that term and 
use it to construct new message. 
• Sensing covers the behavior of Seeing. In BAN logic only seeing is defined. But sensing may not be able to repeat 
the term. For example after P decrypt {X}KA

-1 using the published public key of A, KA, P can sense that KA
-1 is used 

as the key of the encryption, but P can not know exactly what is KA
-1, in other word, can not see KA

-1. If P can see a 
term then P can also sense the term. Sensing is powerful enough to reason about the equivalence and freshness of 
terms. 
• The only difference between sensing and seeing (with the current definition of terms in this paper) is in the case of 
decrypting an encryption using public key encryption algorithm (when the decryption key is available). Seeing can 
only see the decrypted text, not the encryption key, while sensing can sense both the text and the encryption key.  
• For the shared key decryption, both the text and encryption key (same as the decryption key, which is required for 
the decryption) can be seen and sensed.  
• If P senses a fresh X at location L, can P can not see an old X at L.  

2.3.4 Rules for Labeled Strand 
There is a precise and automatic scheme to reasoning about the sensing and seeing behavior of a principal P when P 
can perform smoothly in the protocol. There are four intuitions behind. 

First, if P originates a term (the term is never been received before), then P must construct the term using its top 
level subterms, and so P must (know and) see them. This is justified by the assumption of free encryption.  

Second, P is only supposed to do decryption when P receives terms. So when P send out some (encrypted) term 
that P has received already, then whether P will see or sense the subterms at the place where they are sent depends on 
whether they can be seen or sensed where they are received. 

Third, P may not see or sense a term in a message until several messages later, since P can receive the decryption 
keys later. That is why in the labeled strand rules the message numbers of the beliefs (where the belief occurs) can be 
different from the message number of the location of the seeing or sensing behavior (where the term involved occur).  

Fourth, the most important difference between seeing and sensing is that when a term is decrypted, using public 
key encryption algorithm, P will only see the decrypted text, not the key, but P will sense both the text and the key.  

The following rules form the scheme. The seeing behavior and sensing behavior are the same in some cases, we 
will use see/sense to represent these cases. The following rules are directly translated to labeled strand rules LS1 to 
LS8, respectively. 
1.) If P can see a term at a location L, then P can also sense it at L. 
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2.) If P can see/sense a list, then P can see/sense its members. 
3.) If P receives and sees an encryption using public key algorithm, and P can see the reverse key, then P can see the 

encrypted text. 
4.) If P receives and sense an encryption using public key algorithm, and P can sense the reverse key, then P can 

sense both the encrypted text and the encryption key.  
5.) If P receives and see/sense an encrypted term using symmetric key algorithm, and If P can see/sense the 

symmetric key, then P will see/sense both the encrypted text and key at the corresponding location.  
6.) If P originates an encrypted term using public key encryption, then P will see/sense both the text and the key. This 

is justified by the first intuition. 
7.) If P originates an encrypted term using symmetric key encryption, then P will see/sense both the text and the key, 

similar to 6.  
8.) If P sends out a term that has already been received. Then if P see/sense a subterm of it where it is received, then 

P also see/sense that subterm at where it is sent.  
LS9 will simply change the representation of the locations of terms in a more convenient way, described in section 

2.3.2. 
Labeled strand is the natural and detailed representation of a principal’s requirement during a legal run of the 

protocol. Since it provides more information than strand, it can be a flexible and convenient reasoning framework to 
analyze general kinds of security protocol problems, not just OMA.  

2.4 A Run of the Protocol and Its Properties 
A principal P can fail at an event if one of the following conditions is true: 

− P has not finished its earlier events successfully, or P did not start or finish its earlier events. 
− If in the event P will send out a message and P can not construct the supposed message 
− If in the event P will receive a message, and if X is a subterm of the received message, P can see two different 
values of X at different locations in the received and sent message so far. If the two different X located in the same 
received message, we call it horizontal conflict. If one X appears in a message earlier than the received message, 
we call it vertical conflict. 

Notice that if the initial knowledge covers all terms P supposed to know before running a session, and previous 
receiving events is successful, P will always be able to construct a message and send it out, and P will not fail at the 
second condition.  
 
A run represent a sequence of successful events of executing the protocol. It is defined as the following: 

• If an event e is in the run and that e is a sending or receiving event by a regular principal P, then all P’s 
previous events in the session must be also included in the run earlier than e. 
• If an event e is in the run and e is done by a regular principal P, then P will not fail at e. 

The idea of a run is similar to what defined as a semi-bundle in Athena [28]. The difference is that a semi-bundle will 
represent a set of runs, and each run is a possible linearization of the events of a set of strands.   
 
Observation. When an honest principal P can see at location L a fresh subterm X of a block, then there must be 
sequence of fresh blocks to deliver the X from the originating place of X to P at L. Call this sequence of fresh blocks 
as the carrier sequence of X to L. In this sequence, G0 sends block(i1,j1) to G1, and G1 send block(i2,j2) to 
G2, and so on. G0, G1… are the regular principals who must be active in the current session for P to receive the fresh X. 
Especially G0 is the originator of X. Call them the active principals with P’s point of view. If X is originated 
from P at L, then the length of the carrier sequence of X to P at L is 0. The length of a carrier sequence is the number 
of blocks contained in it.  

When considering OMA, if a fresh block T is sent by an honest principal X and is aimed to another honest 
principal Y, Y may not receive the fresh T, since the attacker can intercept the fresh one and send an old one to Y. We 
are especially interested in the case when a term must be sent by an honest principal and also is received by the 
supposed receiver in the current session, with the point of view of a regular principal P. Call this kind of terms the 
ensured term for P, ET(P), for what is sent, what is received. Any subterm of a fresh block in one of the carrier 
sequences to P must be a member of ET(P). We can observe that if a block is received and the block is fresh, then the 
block is an ensured term.  
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2.5 Causally Earlier Conditions 

There are necessary conditions to let P to finish its role in the protocol. The following are the intuitive description: 
1. ) If that the term X located at i.j.L must be fresh and the term is an ensured term, is the necessary condition for P 
to finish its role, then that all of the blocks included in any possible carrier sequence to deliver X to i.j.L are fresh 
and ensured, must also be the necessary condition for P to finish its role, and all the principals who is the sender or the 
receiver of these fresh blocks must be active in the current session.  
   This can be proved by contradiction. Suppose one of the blocks described above is not fresh, then we prove by 
induction on the distance, in terms of number of blocks, between the block to i.j.L, following the carrier sequence, 
and then we can see that it is impossible for P to receive the fresh X at i.j.L.   
2. ) If P needs to have a principal Q to be active at message i, which means Q is either the sender or the receiver of 
message i, then all of the necessary condition for Q about which block must fresh and ensured (together with the 
knowledge of the subterms located in these blocks) and which principal must be active at which message, must also 
be necessary condition for P. 
3. ) If P needs to have a set of sequence of fresh blocks to be successfully delivered (ensured), and these blocks can 
form a carrier sequence of a SDC X from the originating place of X to i.j.L, then the ensured term located at 
i.j.L must be fresh (the fresh X must be passed to P at i.j.L. 

The events of delivering those fresh blocks (described by the above necessary conditions), has the causally 
precedence relationship [34] with the last event in P’s strand. And all the necessary conditions gathered can be 
considered causally earlier to the last event of P. The gathered knowledge is similar to the concept of goal binding and 
searching back defined in Athena [28 ]. The difference is that we are only interested in finding out the necessary 
conditions, not all of possible situations like the goal binding in Athena.  

Originally P only knows that the SDC terms originated by P are fresh. To find the necessary conditions 1 and 2 is 
like searching back toward the origination place of a SDC, while for condition 3, it is like searching forward from the 
originating place of a SDC. The algorithm and the rules, which are defined later, will have this kind of two direction 
searching ability to find all necessary conditions 

3. Notations and Meanings 

Table 1: Notations used in Rules 
P |=m facts After P sends or receives the mth message, P believes the facts. The facts in this 

notation means they are the knowledge only available to P, not shared. The set of 
facts believed by a single principal P can be grouped as {P |=m fact1, fact2, … } for 
clarity. Here m means the number of the message where P is involved. Variables 
inside has default quantifier of ∀. 

P |≠m  
fact 

P cannot believe the fact, after trying all allowed rules at message m. We do not 
provide negation operators in the logic. Variables inside has default quantifier of ∀ 

, Logical and, to separate the beliefs of a principal. It should be distinguished from the 
separator in a list, by the context. 

; Logical and, used to separate different kind of conditions, or different principals 
beliefs.  

LHS � RHS A logic postulate. The LHS is the conditions. A condition can have three forms: 1.) 
Principal beliefs, in the form of P |=m facts; 2.) Shared knowledge, presented as facts 
without the preceding P |=m.  These facts includes who is the supposed sender or 
receiver, what is the supposed term located at the location L.; 3.) natural facts, like i 
≤ j, P ≠ Q. Beliefs of different principals and different kind of conditions are 
separated by “ ;”, and it means the logic and of them. 

term(L) 
 

The term at location L. 
 

< /@L See and sense can by applied exactly the same way, the action is applied to the term 
located  at the location L. 
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P < L  T P see the term T at location L in the current session. 

P @L T P sense the term T at location L in the current session. 

#Block(L) This notation will make the belief that the block is ensured stand out 
msgi The ith message in the protocol (the code) 
P <  term(L) P can see the term at location L in the current session. 
P @ term(L) P can sense the term at location L in the current session. 
P |=i *fact The fact is the causally earlier condition for P to be active at message i. The fact will 

also be causally earlier to other principals if they depend on P to be active at message 
i. 

P <  #X P can see a fresh X, which is a SDC, in the current session. This notation is goal of 
the algorithm, and is generated by the conclusion rule.  

Pactivei P is active at the ith message. 
P →i P is the supposed sender of the ith message, i ≥ 1.  
P ←i P is the supposed receiver of the ith message, i ≥ 1. 
… The remaining list items. It also means the same thing can applied to the remaining 

list items.  
EndP The message number where P ends its role in the protocol 

4.The OMA Checker and the Rules (the logic world) 
 
The input of OMA checker is just the protocol code. The output will be the checking results of whether some OMA 
attack is possible to a principal. If there can be an attack, the details of that attack can be showed by constructing the 
evidence sequence.  

The OMA checker has two stages, preparation stage, and reasoning stage.  

4.1 Preparation stage. 
The preparation stage will built the shared knowledge about the protocol and the initial knowledge of each 

principal, without applying any rules:  
 Preparation Steps:  
1.) Add the following facts into SharedKnowledge: 

• For every message, say message i, if S is the sender and R is receiver, add S →i and R ←i into 
SharedKnowledge. 
• For every term T appears in the protocol, if T appears at location L, add term(L) == T to SharedKnowledge. 

2.) Then the following tasks will be done for every principal P. 
• Add P |= 0 P  < 0 inital(P) into knowledge(P) 
• Add P |= 0 #X into knowledge(P) for every atomic SDC X that will be originated from P. 
• If P is the sender or the of message i, add P |=i P < i  msgi into knowledge(P). 

4.2 Reasoning Stage 
The purpose of the reasoning stage is simply to compute the closure of all possible rules for all principals. 

To make their meaning of the rules more clear, we separated them into default rules, labeled strand rules, and 
reasoning rules, showed in table 2, 3, and 4 respectively.  

Default rules will be applied together with labeled strand rules and reasoning rules. E1 and E2 describe the 
symmetric and transitive properties of equivalence. X, Y and Z are variables stands for a regular term or a notation like 
term(L). The common reflexive property is removed since it is not needed and may make the OMA checker 
inefficient. The monotonic rule M1 shows that the knowledge of P is monotonically increasing.  

The labeled strand rules (explained in section 2.3) is the direct implementation of labeled strand. Theses rule will 
not interfere with the reasoning rules. So one choice (not chosen here) of the reasoning stage is to divide it with two 
steps, step 1 to compute the closure of labeled strand rules, and step 2 for the closure of reasoning rules.  
Reasoning Stage Steps:  
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• Compute the closure of all of the rules (A possible way to compute the closure is showed in the appendix 2). The 

beliefs of each principal P is saved in knowledge(P). 
 
There are possible optimizations of the computation, showed in appendix 3.  
 
Table 2. Default rules.  
P |=m X == Y  
� P |=m Y == X 

(E1) 

P |=m X == Y, Y == Z  
� P |=n X == Z 

(E2) 

P |=m FACTS ;  
m < n   
�  P |=n FACTS 

(M1) 

   
Table 3: Labeled Strand Rules 
P |=m P < L X  
� P |=m P @L X 

(LS1) 

P |=m P < /@L [X, Y]  
� P |=m P < /@L.1 X, P < /@L.2 Y 

(LS2) 

{ P |=m P < n.L {X}
→Y, P < H Y

-1}�  
P ←n   
� P |=m P < n.L.α X 

(LS3) 

{ P |=m P @n.L {X}
→Y, P @H Y

-1}� 
P ←n  

� P |=m P @n.L.α X, P @n.L.β Y 

(LS4) 

{ P |=m P < /@n.L {X}
↔Y, P @H Y}� 

P ←n   

� P |=m P < /@n.L.α X, P < /@n.L.β Y 

(LS5) 

{ P |=m P < /@n.L {X}
→Y};   

{ P |≠m P < /@f.H {X}
→Y };  

P →n, P ←f   
� P |=m  P < /@n.L.α X, P < /@n.L.β Y 

(LS6) 

{ P |=m P < /@n.L {X}
↔Y};   

{ P |≠m P < /@f.H {X}
↔Y } ;  

P →n, P ←f   
� P |=m  P <  /@n.L.α X, P < /@n.L.β Y 

(LS7) 

{P |=m P < /@n.L X, P < /@n.L.T Y,  P < /@f.H X} ; 
P →f  
� P |=m  P < /@f.H.T Y   

(LS8) 

P |=m P < /@L X  
� P |=m P < /@ term(L), term(L) == X 

(LS9) 

4.3 The Reasoning Rules 
 
The reasoning rules will do the reasoning about the freshness of terms. The default rules will be applied together with 
the reasoning rules.  

FT1 (fresh term) says that if a subterm of a block is fresh, then the containing term, which is a subterm of the block 
too, is also fresh. FT2 is obvious, the X and Y can be a regular term, or in the form of term(L). ET1, ET2 and ET3 
(equivalent terms) say if two terms are equivalent, their corresponding subterms are also equivalent. A1 (Active 
Principal) shows that the sender of a fresh term must be active. A2 means that if a principal Q can sense a term (which 
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should be part of a fresh block), which implies that Q is either the sender or the receiver, then Q is active at that 
message. The learning rules from LN1 to LN6 will gather other principal’s knowledge into P’s knowledge. LN1 will 
let P learn whether Q can sense a smaller term, if P knows Q can sense a bigger term. LN2 is designed for the reason 
that a block is always sensible to Q, if Q can sense the smaller term. Combining LN1 and LN2, P can learn all of the 
subterms of a block that is sensible to Q. LN3 says if Q is active at message a, and P knows Q can sense a term, and Q 
at message a believes that the term is fresh, then P will learn that the term is fresh. LN4 is describing the searching 
back behavior. If P knows Q is active at message a, and a term T1 is fresh, Q can sense T1, and Q believes that Q has 
received another term T2 that is equivalent to T2, then P will learn that Q can sense T2 and T1 and T2 is equivalent. 
LN5 says that if P knows Q is active at message a, P knows that Q can sense two terms, and Q at message a believes 
that the two terms are equivalent, P will learn this equivalence. The causal earlier rules CE1 to CE5 will describe all 
the causally earlier conditions so they can be transferred to other dependent principals. CE1 to CE5 together with LN6 
can be explained as one sentence: if P believes that Q is active at message a, then P will learn all of Q’s belief at 
message a (as P’s causally earlier conditions) about who is active, and the beliefs such that all of terms in them are 
ensured (located in some fresh block). The conclusion rule (C1) will make the final result stand out. 
 
Table 4: Reasoning Stage Rules 
P |=m #term(i.n.L.H)  
� P |=m #term(i.n.L) 

(FT1) 

P |=m #X, X == Y  
� P |=m  #Y 

(FT2) 

P |=m term(L) == term(H);  
term(L) == [X, Y,…]  
� P |=m term(L.1) == term(H.1),  term(L.2) == term(H.2), … 

(ET1) 

P |=m term(L) == term(H) ;  
term(L) == {X}→Y  

� P |=m term(L.α) == term(H.α), term(L.β) == term(H.β) 

(ET2) 

P |=m term(L) == term(H) ;  
term(L) == {X}↔Y  
� P |=m term(L.α) == term(H.α), term(L.β) == term(H.β) 

(ET3) 

{ P |=m #term(f.h), R @ term(f.h) };  
{ Q →f, R ←f };  
P ≠ Q  
� P |=m Q @ term(f.h), #block(f.h) 

(A1) 

P |=m Q @ term(f.h.L);  
P ≠ Q  
� P |=m Q

active
f 

(A2) 

{ P |=m  Q @ term(f.h), Q
active

a } ;   
{ Q |=a  Q @ term(f.h.L)};  
P ≠ Q  
� P |=m Q @ term(f.h.L)           

(LN1) 

{ P |=m Q @ term(f.h.L) };  
P ≠ Q   
� P |=m   Q @ term(f.h)               

(LN2) 

{P |=m Q @ term(f.h.L),Q
active

a };   
{Q |=a #term(f.h.L) };  

P ≠ Q � P |=m  #term(f.h.L) 

(LN3) 

{P |=m #term(f.h.L), Q @ term(f.h.L), Q
active

a } ;  
{Q |=m Q @ term(i.j.N),  term(f.h.L) == term(i.j.N)} ;  
Q ←i ;  

P ≠ Q    
�  P |=m Q @ term(i.j.N), term(f.h.L) == term(i.j.N) 

(LN4) 
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{ P |=m Q @ term(L), Q @ term(H), Q

active
a} ;  

{ Q |=a term(L) == term(H) } ;  
P ≠ Q    
� P |=m term(L) == term(H)      

(LN5) 

P |=m #block(f.h)   
� P |=m *#block(f.h) 

(CE1) 

P |=m Q
active

a  

� P |=m *Q
active

a 
(CE2) 

P |=m #term(f.h.L), #block(f.h)   
� P |=m *#term(f.h.L) 

(CE3) 

P |=m term(f.h.L) == term(a.b.N), #block(f.h), #block(a.b)  
� P |=m *term(f.h.L) == term(a.b.N) 

(CE4) 

P |=m Q @ term(f.h.L), #block(f.h)   
� P |=m *Q @ term(f.h.L)   

(CE5) 

{ P |=m Q
active

a } ;  
{ Q |=a  *FACT } ;   
P ≠ Q    
� P |=m FACT, *FACT 

(LN6) 

P |=m P <  term(L), #term(L), term(L) == X    
� P |=m P <  #X 

(C1) 

 
4.3 Result of OMA checker  

 
After the running reasoning stage, if for a principal P, if P <  #X ∉ knowledge(P), for a atomic SDC X, and P 
is supposed to see X, which means P <  term(L) and term(L) == X � knowledge(P), then there is an 
OMA attack to trick P to accept some old X. If P <  #X � knowledge(P), then an OMA to trick P to accept 
some old X is impossible. 

If an attack is detected for P, then an evidence sequence can be constructed (described in the following section) to 
show the details of the attack. 

4.4 Evidence Sequence 
 
The evidence sequence is constructed to show the attack in detail, if an OMA is detected by the OMA checker. The 
design of constructing the evidence sequence is inspired by the observation that is proved by lemma 1. Lemma 1 can 
also be proven by the completeness of OMA checker. The following will give a more direct proof.  
 
Lemma1:  
If there is an OMA, call it attack1 for a protocol to let a principal P to accept an old value for a SDC X, then there is 
another OMA attack2 for the same protocol such that every faked message constructed by the attacker in attack2 is 
the same as the corresponding faked messaged message in attack1, except that all of the old blocks that appear in a 
faked message in attack1 (they may be chosen from different old sessions) are replaced with the corresponding old 
blocks coming from a single old session (with the same locations).  
 
Proof: Suppose there is a run, called V1, which is a sequence of events. In V1 some message is faked by the attacker 
and contains some old blocks. We will do the old block replacing process message by message in V1, and the result 
sequence is called V2. We will prove that at each step the so far achieved prefix of V2 is a run. OldS is the full 
sequence (no dropped message) of events in an old session that is perfectly legal and has no attacks (OldS is also a 
run) from which the old blocks are chosen to replace the old blocks in V1. 

Since sending events will always be successful if the previous events are all successful, we only need to show that 
the events of receiving the replaced message will not fail. Suppose the messages contained in V1 are msgm1, msgm2…, 
we do induction on msgmj, 1 ≤≤≤≤ j, until the end of V1. We call the receiver of msgmj as Rmj. 
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Base case:  msgm1. We replace all of the old blocks in msgm1 with the corresponding blocks in the first message in 

OldS. There is no vertical conflict (two different values of a SDC X in two different messages are visible to the 
principal) in the replaced message since it is the first event of Rm1, otherwise V1 will not be a run. Suppose Rm1 find 
a horizontal conflict (two different value of X in the same message) of an atomic SDC X, in the replaced message, 
which means Rm1 can see two different X at the replaced msgm1.  

Case 1: the two X appears in two new blocks. It is impossible since if it is true, the same conflict appears also in the 
first message in V1 and thus V1 will not be a run. 

Case 2: the two X appears in two old blocks in the new message, which means that the two old blocks come from 
OldS. This is impossible because it means that the same conflict occurred in OldS. But in OldS there is no conflict, 
contradictory.  

Case 3: the two Xs appears in a single block. If the block is a new block, then V1 must have the same conflict, 
impossible. If the block is an old block, which comes from OldS, then the OldS must have the same conflict, 
impossible.  

Case 4: one of the X locates at an old block, while the other locates at a new block. There can only be two values of 
X in the new message, the old one from OldS, and the new one created by the sender of msgm1. Since in an old block 
everything is old, the new X must be located in the new block, and the old X is located at the old block. Suppose the 
old X appears at location L in the old block from OldS in V2, then Q must see an old X at location L in V1 also. Since 
Q will see the new X in V2, say at L2, all of the blocks in a possible carrier sequence of X to L2 must be fresh and 
included in V2. Then they are included in V1 too. So Q will also see a new X in V1 (new block has not been replaced, 
and the carrier sequence of X ), there is a conflict in V1 too, impossible.  

Induction case: Suppose the old block replacing process is successful at all of the messages before msgmj, 1 <j ≤ n, 
which means there are no vertical and horizontal conflict up to the msgj-1, we want to prove that after replacing the old 
blocks in the msgmj, the result is also a run. We prove by contradiction and suppose there is a conflict for receiver of 
msgjm

. 

If the conflict is a horizontal conflict, it must occur at msgjm since by the induction assumption it can not occur earlier. 
It is impossible by the identical proof of the base case. 

Now the only possible conflict is a vertical conflict. Suppose Rmj sees an X at msgmj
 and a different X at msgmi, 1 

≤ i < j. We can repeat the proofs of the case 1, 2 and 4 in the base case here to show that it is impossible. The reasoning 
of the case 1, 2 and 4 does not require it to be a horizontal conflict or a vertical one. 

Now we have proved that V2 is a run. We only need to show if V1 is an OMA to trick P to see an old SDC X at 
location L, then in V2 is also an OMA to trick P to see   some old X at L. P should not be the originator of X, otherwise 
P will always see the fresh X in every possible run. So P must firstly see X by receiving it. It is enough to just prove 
the case that P receives and sees X at L. 
Suppose in V2, P will receive and see a fresh X. Then every possible block that is located in some carrier sequence of 
X to L must also be included as fresh blocks in V2. By the way V2 is constructed, all these blocks must also included 
in V1 as fresh blocks. So in V1 P will also see a fresh X at L. Contradictory. 

4.4.1 Building Evidence Sequence 
The idea to build evidence sequence is to include all of the events of an active principle, while replaces all blocks that 
P does not believe to be fresh with the corresponding old blocks from an old session.  
Preparation step : 
Define the following names for the principal P:  

− P ends at the endPth message, 1 ≤ endP.  
− NewBlocks(P) = { block(i.j) | P |=endP #block(i.j) ∈ knowledge(P), for some i, j}. 
− NewMessages(P) = { i | P |=endP #block(i.j) ∈ knowledge(P), for some i, j }. 
− ActivePrincipals(P) = { Q | P |=endP Qactive

i ∈ knowledge(P), for some j } ∪ { P }. 
− LatestAction(P,Q) = max( { m | P |=endP Qactive

m }). LatestAction(P, P) = endP. 
− EV(P) is a sequence of events, initially empty.  
− OldS is an old session.  

Scanning step:  
Starting from the first message to the endPth message, for each message, say the jth message, 1≤ j ≤ endP, suppose Sj 

is the sender and Rj is the receiver, do the following in sequence: 
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− If Sj ∈ ActivePrincipals(P), and j ≤ LatestAction(P, Sj), append the event to EV(P): Sj constructs msgj using its 
current knowledge and sends it out. 
− If Rj ∈ ActivePrincipals(P), and j ≤ LatestAction(P, Rj), then  

• If j ∉ NewMessages(P), append the event to EV(P): Rj receives the old jth message in OldS (it is sent by the 
attacker) 

• If j ∈ NewMessage(P), append the event to EV(P): Rj receives a faked message (constructed by the attacker), 
which is the same as the new msgj sent by Sj ( it must be true that Sj ∈ ActivePrincipals(P) ), except that all of the 
blocks of the new msgj

 that are not in NewBlocks(P) are replaced by the corresponding old blocks in the old msgm 
in OldS. 

− If any of the above condition is not true, do nothing. 
 
Observation: When run the protocol with the evidence sequence, for a SDC X, X can only have two possible values, 
the new one generated by the supposed originator of X, and the old one chosen from a single old session. 

5. Soundness 
The following are obvious observations about running the OMA checker with a protocol. P is a principal.  
1.) P can sense a term X after sending or receiving the jth message, X has the location L, when running the protocol, 

iff P |=j P @ term(L) ∈ knowledge(P).  
2.) P is the sender of the ith message, iff P ←i ∈ SharedKnowledge. Similarly, P is the receiver of the ith message, iff 

P →i ∈ SharedKnowledge. A term X appear is used to construct the ith message as a subterm in the location i.L, iff 
X == term(i.L) ∈ sharedKnowledge. 

3.) After sending or receiving the jth message, P can sense the term X at two different locations L and H, P |=j term(L) 
== term(H). 

4.) If an atomic SDC X is originated from P, then for every location where P originates X and send X out, say 
location i.j.L, P |=i #term(i.j.L), P @ term(i.j.L). 

5.) Among the leaning rules LN1 to LN6, only LN2 does not require a condition of Qactive
j, for some Q and j. But the 

condition of Q @ term(i.j.L) in LN2 immediately implies that Qactive
i, by A2.  

6.) Whenever P |=m #block(i. j), it must also be true that P |=m #term(i. j), Siactive
i, Riactive

i, Si @ term(i, j), Ri @ term(i, 
j). The reason is that only A1 and LN6 will produce P |=m #block(i. j). For A1, from the conditions and 
conclusions we know P have 3 of these 5 beliefs. The remaining 2 will come from applying A2 with the 
conditions of Si @ term(i, j), Ri @ term(i, j). LN6 will preserve this invariant, once this invariant is true.   

7.) A1 must be the rule to apply in order to let P have the first belief of P |=m W @ term(L), because all other possible 
rules will depend directly or indirectly on the facts that Q @ term(H) and P ≠ Q, for some Q and H. In A1, there is 
the condition of R @ term(m.n), R can be P. A1 reflects the behavior of the freshness challenge that P generates, 
sends out, and receives some fresh term. After receiving the fresh term, P knows that the sender must be active.  

8.) For all of the learning rules, together with A1 and A2, if a term appears in the conditions or conclusions, say 
term(i.j.L), then this term is an ensured term for P, in the sense that the term is sent and received in the real world 
by the honest principals in the current session. In fact, P must have P |=m #block(i.j) for some m. This can be 
proved by induction. And for each rule, suppose this observation is true for the conditions, then it is also true for 
the conclusion.  

9.) The only terms that P may believe to be fresh, but actually not ensured are those that are sent out by P. But these 
terms will not participate in the learning rules.  

10.) If P |=m  Qactive
i, then in the real world, there must be a sequence of fresh blocks passing Q at the jth message and 

reach to P no later than the mth message. If we draw the branches of fresh blocks as a upside down tree, The node 
of P’s strand at the mth message is the root, than the node of Q at the jth message is on a branch of the tree.  

11.) Only sense is used in reasoning the causally earlier conditions.  
12.) The beliefs have the temporal feature. The belief of P |=i fact will honest reflect P’s behavior in the real world at 

the ith message.  
13.) In summary, the labeled strand rules will reflect the labeled strand correctly. The knowledge that P collects by 

using the reasoning rules about other strands and other principals must be causally earlier conditions about 
tracing the freshness, and P needs them to finish its strand. 
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Soundness Theorem:  After running the OMA checker. For a principal P and an atomic SDC X, if P |=endP P <   #X, 
then there must be no old message attack to trick P to accept some old value of X.   
  
Proof: Intuitively soundness means that algorithm will only derive the necessary conditions for P to finish its strand 
successfully. The soundness is obvious. Detailed proof can show that each rule is sound. The observations also shows 
the behind reason of the design of the rules and its soundness. The labeled strand rules are sound, since it is just exact 
translation of the labeled strand. The reasoning rules are sound since they will only derive the causally earlier 
conditions for P with no confusion (the terms are all ensured). Since each belief will reflect the corresponding real 
world behavior correctly, no OMA of an atomic SDC X to P is possible, if P |=endP P <   #X ∈ knowledge(P).  

6. Termination and Computation Time 
The algorithm will terminate since the amount of beliefs is finite and the algorithm will not continue to compute new 
beliefs (the details in appendix 2).  

The locations of beliefs like P |=i can be organized as a list of sets. And the monotonic rule can be implemented 
using a sequence of belief, without duplicating the same beliefs at different steps. The equivalence beliefs can be 
implemented using equivalence classes. A term can only belong to one equivalent class. 

Suppose the length of the protocol is L, in terms of number of characters in the code. The total number of terms is 
O(L) (easy to prove). The number of principals is P.  

For each term say term(T), a principal Q will have the beliefs of #term(T), term(T) == X, W @ term(T), term(T) 
== term(H). The number of these beliefs are bounded by the belief number of W @ term(T) which is O(P). Other 
beliefs like #(block(i.j), *fact do not need to mention since they have lower bound of belief numbers. The total 
number of beliefs for each principal is O(P × L). The total number of beliefs for all principals is B, B = O(P2 × L). 

The maximum number of independent conditions (the conditions the can decide other input conditions, defined in 
appendix 2) of all rules is 2. By the Rule Closure Complexity Theorem,  the overall complexity is O( R × B2 + 1 ) = O( 
R × P6 ×  L3 ).  

This is the most pessimistic bound, but it is a polynomial time result. In computing the closure of OMA checker, 
many rules can be applied sequentially together, For example, A2 can always be applied after A1. And the real 
computation cost will be much lower than this bound.  

There are potentials to make the computation much more efficient (see the appendix). 
The framework provided in this paper provides several features supporting efficient implementation:  

1.) The learning rules can be utilized to remove redundant computation as much as possible.  
2.) The algorithm will compute all of the possible OMA for all principals with all SDC in just one run, and which 
is fully automatic.  
3.) Third, the logic will only reason about the correct and necessary conditions, without wasting time on guessing 
and computing the possible but false cases, a feature of many other tools. 

We consider our approach, with these features, a novel and practical solution. These novel features make the 
extension of this paper promising and interesting to deal with the very hard problem of checking the most general 
kinds of attacks.   
 
Rule Closure Complexity Lemma 
Rules is a set of rules, the total amount of rules is R. Facts is a set of facts, initially is not empty, call the initial facts as 
Initial Facts. Each rule ri ∈ Rules needs Num(ri) facts as the input, and returns a set of facts. 1 ≤ i ≤ R. Suppose the 
computation time to compute the output of every given signature is a constant. A = max{ Num(ri) | ri ∈ R}. When a 
new fact is generated, the new fact will be used an input fact of the rules to generate further pieces of knowledge. 
When Facts is expanded to the extent that no more new facts can be added, we say the closure of Rules with Initial 
Facts is computed.  There is an algorithm to compute this closure with the complexity of  O( R × BA+1 ). 
 
Proof: Facts and beliefs have the same meaning in this lemma. 
We define a signature as a tuple of the form [ri, K1, K2, …Kn], where ri ∈Rules, and K1…Kn ∈ Facts. P(A, B) is the 
number of possible sequences using A elements from the total set of B elements. The total number of signatures is O( 
R  × P(A, B)).  Since P(A, B) is O(BA), the total amount of signature is O( R ×  BA ).  
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Note that possibly different signatures will produce the same knowledge several times. For checking a signature is 

a new one, we can sort the facts set, and then each check will cost O(log(B)). But it will not change the polynomial 
time result. So this proof assume the simpler case where the check cost O(B) 

There is an algorithm which can enumerate the entire possible signatures on the fly (together with the process of 
generating new facts), and each signature can be touched only once, as the following:  
  NewFacts is an empty sequence.  

Initial step:  enumerate and compute all of signatures using only facts from Initial Facts. Every time a new 
knowledge is generated (not a member of current Facts), append it to NewFacts. 

Iteration Step:  
• pop off the first element from NewFacts, call it a 
• append a into Facts. 
• Enumerate and compute all of the signatures where a is used as an input.  
• If a fact b is generated, and b is a new fact ( b ∉ Facts, and, b ∉ NewFacts) append b to NewFacts..  
• Repeat Step 2 until NewFacts has to be empty. Then Facts is the computed closure. 

So the complexity is O(R × BA ×  B) = . O(R × BA+1).  
 
For the input facts of a signature (a permutation of beliefs), some facts can decide other beliefs, call them 

independent facts.  For every rj, we define the set number of independent facts as I(ri). Define I = max{I(rj) | rj ∈ Rules 
}. The possible number of signature is O( R × BI ). This observation proves the following theorem.  

 
Rule Closure Complexity Theorem:  
There is an algorithm to compute the closure of the rules with complexity O(R × BI+1) . 

7. Completeness 
Completeness theorem: For a protocol Pro, an atomic SDC X, and a principal P, if P |=endP P <   #X ∉ 
knowledge(P), and P is supposed to see X (P |=endP P <   term(L) ∈ knowledge(P) , and term(L) == X) then there is an 
OMA that will make P to accept an old value of X. 
  
The completeness theorem can be proved by showing that there is a run of the protocol, which is the evidence 
sequence.  

Intuitively completeness means that rules are powerful enough to collect all of the necessary conditions for P to 
finish its strand. Lemma 2 essentially shows that the rules can search forward, in the sense that after a sequence of 
fresh blocks is found, P will discover the new knowledge about equivalence and freshness of the terms inside these 
blocks, and the searching direction will start from the originators, following the direction of the deliverance of the 
blocks. Lemma 3 essentially shows that the rules can search backwards, in the sense that if P senses that some term X 
is fresh at some location L, then P will find all of the possible carrier sequence of X to L, and knows that all of the 
blocks along those sequences are fresh and all of the principals involved are active, and the searching direction starts 
from L and will trace back toward the originator of X. Lemma 2 and 3 together will show that some properties must 
be true in the real world for P iff they are reflected in the logic world as P’s knowledge. Lemma 4 will show EV(P) is 
a run. Then the proof of the completeness theorem is easily followed. When applying rules in the proofs some 
conditions are not mentioned if they are obvious. When a belief reflects the labeled strand, i.e., the rule is derived by 
the labeled strand rules and default rules, we may not present the rules to derive it since they are so obvious.  
e, such that after the run, P will actually receive an old X.  
 
Lemma 2   In EV(P), if a principal Q (Q can be P) receives and senses a fresh X, X is an atomic SDC, at position i.j.L, 
then P |=endP #term(i.j.L) , Q @ term(i.j.L) ∈ knowledge(P), and Q ←i ∈ SharedKnowledge. 
  
Proof: The conditions of this lemma are real world behaviors (no events in EV(P) will fail before Q receives X), and 
the conclusions is the logic world behavior. The proof of this lemma can demonstrate the searching forward ability of 
the rules.  

Since Q receives the fresh X at position i.j.L, there must be a carrier sequence of X to i.j.L in EV(P), call it CSX, so 
that every block in CSX is included in EV(P) as a fresh block. We name the sender of the first block in CSX as G0, the 
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first block as term(i1.j1), similarly the mth block as term(im, jm), and so on. Q is the same as Gn, suppose the length of 
CSX is n, n ≥ 1. If P |=endP FACT ∈ knowledge(P) , we say P has FACT.  
Q ←i ∈ SharedKnowledge is obvious since Q is the receiver of the ith message, by observation 2 of soundness. 

Gm-1 and Gm are the sender and receiver of the mth block, which is the same as term(im.jm). By the definition of 
EV(P), P has #block(im.jm). P will also have Gm-1 @ term(im.jm), Gm @ term(im.jm), #term(im.jm), Gm-1active

im, 
and Gmactive

im. Call it result 1. This is showed by observation 6 of soundness.  
We should take special care to the cases where a principal R can not sense the passing X (but it can sense some term 

containing X) and R forwards a bigger term containing X, in the middle of CSX. Suppose Gm is one of the principles 
in the middle of CSX. Then there must be a smallest term tGm that tGm contains the passing X and Gm can sense tGm in 
both the received m-1th block, say as term(im-1.jm-1.TGmm-1), and the sent mth block, say as term(im.jm.TGmm). 
Then it must be true that Gm |=m term(im-1.jm-1.TGmm-1) == term(im.jm.TGmm), by the soundness of the rules to 
record the labeled strand. Let the passing X received by Gm and contained in tGm as 
term(im-1.jm-1.TGmm-1.LGmm-1), and it sent by Gm in the m+1th block in CSX as term(im.jm.TGmm.LGmm). Note in 
the case when Gm can sense the passing X, X is tGm, and TGm

m and  TGm
m-1 are empty.  

By result 1, P has Gm @ term(im-1.jm-1) and Gm @ term(im.jm), then by LN1, P |=endP Gm @ 
term(im-1.jm-1.TGmm-1), Gm@ term(im.jm.TGmm). By LN5, P |=endP term(im-1.jm-1.TGmm-1) == 
term(im.jm.TGmm). Call it result 2. If P is the same as Gm, then the above result is trivially true without needing to 
apply LN1 and LN5.  

Now we do induction to show that P will believe for each location H that X appears in CSX, P has #term(H). 
Step 1 (base step): G0 must have a belief of G0 |= i1 #term(i1.j1.TG01.LG01), G0 @ term(i1.j1.TG01.LG01). X is 

originated at i1.j1.TG01.LG01. G0 is the originator of X (actually TG01 is empty). This is true by the soundness of the 
algorithm to record the labeled strand into beliefs. If P = G0, then P |=i1 #term(i1.j1.TG01.LG01) and also P |=endP 
#term(i1.j1.TG01.LG01) by M1. If P ≠ G0, then since P has G0 @ term(i1.j1), P will have G0 @ term(i1.j1.TG01.LG01), 
by LN1. Then by LN3, P has #term(i1.j1.TG01.LG01). 
Step h (induction step):  Suppose for every previous principal in CSX, say Gm, 0≤m<h, if Gm sends out a block 
containing the passing X as the term(im+1.jm+1.TGmm+1.LGmm+1), then P has #term(im+1.jm+1.TGmm+1.LGmm+1). 
It is obvious that P also has #term(im+1.jm+1.TGmm+1). We want to prove that if Gh sends out the h+1th block in CSX 
containing the fresh X as term(ih+1.jh+1.TGhh+1.LGhh+1), P will have #term(ih+1.jh+1.TGhh+1.LGhh+1). 

By induction hypothesis, P has #term(ih.jh.TGh-1h.LGh-1h). P has term(ih.jh.TGhh) == term(ih+1.jh+1.TGhh+1) by 
result 2. And by ET2 or ET3 P has term(ih.jh.TGhh.LGhh) == term(ih+1.jh+1.TGhh+1.LGhh+1). Notice that the X 
passed in the hth block is represented as both term(ih.jh.TGh-1h.LGh-1h) and term(ih.jh.TGhh.LGhh). Although the two 
locations are the same, they are named differently because TGh and TGh-1 can be different. So P has 
#term(ih.jh.TGhh.LGhh). And by FT2, P has #term( ih+1.jh+1.TGhh+1.LGhh+1 ). Induction step is done. 
Since Q can sense the fresh X at i.j.L in the last block in CSX, Q |=i Q @ term(i.j.L).  P has Q @ term(i.j), showed by 
result 1. Then by LN1, P has Q @ term(i.j.L). If P = Q, it is trivially true. 
We can show that Gn-1 is the sender and Q is the receiver of the nth block in CSX. By applying the above induction, 
we get P |=endP #term(in.jn.TGn-1n.LGn-1n). Since in.jn.TGn-1n.LGn-1n is the same as i.j.L, P |=endP #term(i.j.L). lemma 2 is 
proved. 
  
Lemma 3 If P |=h #term(i.j.L), Q @ term(i.j.L) ∈ knowledge(P), and Q ←i ∈ SharedKnowledge, for some h, h ≤ 
endP, and some i.j.L, and some principal Q (Q can be P), X is an atomic SDC that appears at i.j.L, then for every block 
that is in a possible carrier sequence of X to i.j.L, say term(m.n), P |=h #block(m.n). 
  
Proof: The conditions are logic world behavior. Since the EV(P) is constructed by the P’s beliefs of fresh blocks, the 
results of this lemma will reflect the real world behavior. The proof of this lemma can demonstrate the searching 
backward ability of the rules.   

Suppose there is a possible carrier sequence of X to i.j.L, call it CSX with length (the number of blocks) n. We 
name the blocks and principals in CSX the same way as in the proof of lemma 1. So Q is Gn, and term(i.j), the last 
block, is the same as term(in.jn). G0 is the originator of X. It must be true that n ≥ 1. 

We can prove this lemma by tracing back CSX from the last block to the first block. Now we do induction to show 
that P will believe for each location H that X appears in CSX, P has #term(H). 

Base step (on the nth block, the last block in CSX): X is passed to Gn (which is Q) in the nth block, which is 
term(in.jn),  sent from Gn-1. Since P |=h #term(i.j.L), by the rule FT1, P |=h #term(i.j). Since P |=h  Gn @ term(i.j.L), by 
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LN2, P |=h Gn @ term(i.j). And obviously,  Gn-1→in,  Gn←in ∈ SharedKnowledge.  Then if P ≠ Q, A1 can be applied 
and will produce P |=h #block(i.j),  Gn-1 @ term(i.j). Then by A2 P |=h Gn-1active

i. 
Further more, suppose a term tGn-1, represented as term(in.jn.TGn-1n), is a smallest term visible to Gn-1 in the nth 

block sent by Gn-1, and tGn-1 contains the passing X which is term(in.jn.TGn-1n.LGn-1n). Here in.jn.TGn-1n.LGn-1n is the 
same as i.j.L (in is i, jn is j, and TGn-1n.LGn-1n is L). So P |=h #term(in.jn.TGn-1n.LGn-1n). By FT1, P |=h 
#term(in.jn.TGn-1n). Gn-1 must have Gn-1 |=in Gn-1 @ term(in.jn.TGn-1n). Since P |=h Gn-1 @ term(in.jn), by LN1, P 
|=h Gn-1 @ term(in.jn.TGn-1n).  

Induction step (on the mth block) : Suppose all of the blocks, say the fth block, such that f≥ m ≥ 1 , P |=h 
#block(if.jf), #term(if.jf.TGf-1f.LGf-1f), #term(if.jf.TGf-1f), Gf-1 @ term(if.jf.TGf-1f). We want to show that the same 
result can be applied to the m-1th block. Notice that if the mth block is the first block in CSX, lemma 3 is already 
proved. We only need to consider the case the Gm-1 receives block(im-1.jm-1) and sends block(im.jm) to pass X in 
the middle of CSX. 

Gm-1 must have Gm-1 |=im Gm-1 @ term(im.jm.TGm-1m), term(im-1.jm-1.TGm-1m-1) == term(im.jm.TGm-1m), 
Gm-1 @ term(im-1.jm-1.TGm-1m-1), since these knowledge about Gm-1’s strand must have been reflected in Q’s 
knowledge. It is obvious that P |=h Gm-1active

im. By LN4, P |=h term(im-1.jm-1.TGm-1m-1) == term(im.jm.TGm-1m). 
Then by FT2, P |= h #term(im-1.jm-1.TGmm-1).  By ET rules, P |=h term(im-1.jm-1.TGmm-1.LGmm-1) == 
term(im.jm.TGmm.LGmm). By FT2, P |=h # term(im-1.jm-1.TGmm-1.LGmm-1). By A1, P |=h #block(im-1.jm-1), Gm-2 
@ term(im-1.jm-1). Then by A2, P |=h Gm-2active

im-1. And then by LN1, P |=h Gm-2 @ term(im-1.jm-1.TGm-2m-1). 
Since term(im-1.jm-1.TGm-1m-1.LGm-1m-1) is the same as term(im-1.jm-1.TGm-2m-1.LGm-2m-1), P |=h # 
term(im-1.jm-1.TGm-2m-1.LGm-2m-1). By FT1, P |=h # term(im-1.jm-1.TGm-2m-1). Induction step is proved. 

Following the induction step until m = 1. P will believe that all of the blocks in CSX are fresh. 
  
Lemma 4 EV(P) is a run. 
Proof: We can prove lemma 4 by contradiction. Suppose the earliest place where EV(P) fails is at ith 
message, by Q. Then Q must be supposed to receive msgi.  
   Notice that if Q can see a term, then Q can also sense a term. This is also reflected in the rules. We always 
apply lemma 2 and 3. 

Case 1: The previous action of Q is not included in EV(P). This is impossible. By the way of constructing 
of EV(P), EV(P) will include the prefix of Q’s strand up to LatestAction(P, Q), call it LAQ.  

Case 2: Q sees an atomic SDC X in the ith message, say at i.j.L, but Q sees X with a different value at 
location m.n.H, m ≤ i. One of them is a fresh X and the other is an old X. By the way of constructing EV(P), 
m and i < LAQ. Q |=i term(i.j.L) == term(m.n.H) ∈ knowledge(Q). This is true by the soundness of the rules 
to record the labeled strand. There are two sub-cases.  

Case 2.1: Q sees (and sense) a fresh X at i.j.L, an old X at m.n.H. Depends on Q sends or receives the mth 
message, there are two sub-cases. 

Case 2.1.1: Q is the sender of the mth
 message. Since Q sees an old X at m.n.H, then Q must not be the 

originator of X (otherwise Q has already failed earlier). So Q must have received and seen an old X at some 
message msgj, j < m. Then this case is reduced to case 2.1.2, where Q receives the old X at some place other 
than i.j.L. 

Case 2.1.2: Q is the receiver of the mth message. Since Q receives and sees (also senses) a new X at i.j.L, 
by lemma 2, P |=endP Q @ term(i.j.L), #term(i.j.L). LAQ is Q is latest active point to P. Since Q |=LAQ 
term(i.j.L) == term(m.n.H), Q @ term(m.n.H), and i < LAQ, m < LAQ, by applying LN4, P |=endP 
term(i.j.L) == term(m.n.H), Q @ term(m.n.H). Then by FT2, P has #term(m.n.H). Then by lemma 3, Q 
must receive and sense a new X at m.n.H. Then Q can not see an old X at m.n.H. Contradictory. This case is 
impossible.  

Case 2.2: Q sees (and sense) an old X at i.j.L, but a new X at m.n.H. Depending on Q sends or receives 
the mth message, there are two sub-cases.  

Case 2.2.1: Q is the sender of the mth message.  
Case 2.2.1.1: X originates at m.n.H from Q. Then Q |=LAQ #term(m.n.H). Also Q |=LAQ term(m.n.H) == 

term(i.j.L). By FT2, Q |=LAQ #term(i.j.L). By Lemma 3, for every block, say block(F), in some carrier 
sequence of X to i.j.L, Q |=LAQ #block(F). Then by LN6, P will learn all of these facts since P |=endP 
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Qactive

LAQ. So P will have #block(F). These fresh blocks are all included in EV(P) as fresh blocks. So it is 
impossible for Q to receive an old X at i.j.L.  

Case 2.2.1.2: X is not originated at m.n.H. Then Q must have received and sees a new X at some message 
earlier, which is reduced to a case that is equivalent to case 2.2.2. 

Case 2.2.2: Q is the receiver of the mth message. This case is impossible by the same reasoning of case 
2.1.2.                                          
  
Proof of completeness theorem: By Lemma 4, EV(P) is a run. We only need to show that EV(P) actually will trick 
P to accept some old atomic SDC X. Say L is the first place where P can see X. and it is reflected in the logic world 
and P |=endP P <  term(L) ∈ knowledge(P). P is not the originator of X, because otherwise P will have P |=endP 
#term(L). So it is enough to only consider that case that P receives and sees X at L. The value of X that P sees (also 
senses) at L must be old, because otherwise by lemma 2, P |=endP #term(L) ∈ knowledge(P), and then P |=endP

  P <  #X 
by C1, and it is contradictory. 

8. Conclusion and Future Work 
 
This paper defines a common but non-trivial case of authentication attacks. A complete and sound algorithm with 
polynomial time complexity is presented. It has efficient features for further optimizations and extension. A logic in 
the style of using beliefs is used as a frame work to construct the algorithm. This logic is based directly on the 
protocol code and is designed naturally and is easy to be verified. The model we called labeled strand can be applied 
for checking general kinds of attacks for security protocols. The algorithm is fully automatic. All the protocol 
examples (including the one that BAN logic can not derive the freshness, see appendix 1) appearing in this paper can 
be verified easily using the rules of this logic. 

In this paper, we take the advantage that in OMA freshness means honesty (if a block is fresh, then the block is sent 
and received by the honest principal, without modification). In order to deal with more tricky attacks, the freshness 
and honesty must be separated, and new rules must be designed. We are also interested to see how these efficiency 
features suggested by the rules can be fully utilized to remove the redundancy of computation to the maximum level. 
We are continuing this research. 
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Appendix 1 

 
We include the rule derivations of checking one protocol example in the appendix.  

If a fact is an initial knowledge of a principal P, or the fact represents some knowledge about the strand of P, the fact 
can be achieved without applying reasoning rules. We include this kind of facts and the natural facts and the shared 
facts directly into the examples, using italic font, without mentioning how to derive them, for clarity of the 
presentation and to emphasize on the derivation using reasoning rules. Only interesting beliefs are included. For each 
belief derived using the reasoning rule, an id is assigned to it in the form of A-2-3 (A’s third belief in message 2) as 
the superscript. The reasoning rule used is marked as the subscript. The monotonic rule M1 is applied without being 
mentioned. The checking process with start from the first message to the last message of the protocol. The conclusion 
rule C1 is highlighted.  

 
Example: Checking Needham-Schroeder with Shared Key Protocol (protocol 4). 
1. A → S: A, B, NA  
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2. S → A: {NA, B, KAB,{KAB, A}

↔KBS}
↔KAS 

3. A → B: {KAB, A}
↔KBS 

4. B → A: {NB}
↔KAB 

5. A → B: {NB – 1}
↔KAB  

 
In this protocol, the last message can also be presented as A → B: {f(NB)}

↔KAB, where f is a function. To deal with 
this kind of functions, a labeled strand rule can be added as  
P |=i P @L f(X)  
� P @L.γ X   

(F1) 

A will see three SDCs: NA, KAB, and NB. B will see two SDCs: NB and KAB. S can see NA and KAB. There is no way for 
S to verify that NA is fresh. We will show that A and B will receive and see fresh SDCs.  
 
Message 1: 
A |=1 #NA, A <  term(1.3), term(1.3) == NA  
�C1 A |=1 A <  #NA

A-1-1 

 
Message 2: 
S |=2  #term(2.α.3), S <  term(2.α.3), term(2.α.3) == KAB �C1 S |=2 S <  #KAB

S-2-1 
 
A |=2 #term(2.1.α.1) �FT1  A |=2 #term(2.1)A-2-1 
 
{A |=2 #term(2.1)A-2-1, A @ term(2.1)}; 
 {S →2, A ←2}, A ≠ S  
�A1  A |=2 S @ term(2.1)A-2-2 
A |=2 S @ term(2.1)A-2-2 �A2 A |=2 Sactive

2
 A-2-3 

 
A |=2 S @ term(2.1)A-2-2, Sactive

2
 A-2-3 

S |=2 S @ term(2.1.α.3) ;  A ≠ S  
�LN1 A |=2 S @ term(2.1.α.3)A-2-4 
 
{A |=2 S @ term(2.1.α.3)A-2-4, Sactive

2
 A-2-3 }; 

S |=2 #term(2.1.α.3);  S ≠ A  
�LN3 A |=2 #term(2.1.α.3)A-2-4 
 
{A |=2  #term(2.1.α.3)A-2-4, A <  term(2.1.α.3), term(2.1.α.3) == KAB } �C1 A |=2 A  <  #KAB

A-2-5 
 
Message 3:   
B |=3 B <  term(3.1.α.1) 
 
Message 4:  
B |=4 B <  term(4.1.α), term(4.1.α) == NB,  #NB  
�C1 B |=4 B <  # NB

B-4-1 
 
A |=4 term(4.1.β)==term(2.1.α.3), #term(2.1.α.3)A-2-4 
�FT2 A |=4 # term(4.1.β)A-4-1 

 

A |=4 # term(4.1.β)A-4-1 �FT1 #term(4.1)A-4-2 
 
A |=4 #term(5.1)A-4-2, A @ term(4.1)}; 
{B →4, A ←4 }; A ≠ B �A1 B @ term(4.1)A-4-3 

 

A |=4 B @ term(4.1)A-4-3 �A2 Bactive
4

 A-4-4 
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{A |=4 Bactive

4
 A-4-4, B @term(4.1) A-4-3 }; 

{B @ term(4.1.α) };  A ≠ B  
�LN1 A |=4  B @ term(4.1.α)A-4-5 
 
{A |=4  B @ term(4.1.α)A-4-5, Bactive

4
 A-4-4 } ; 

{B |=4 #term(4.1.α) }; A ≠ B  
�LN3 A |=4 #term(4.1.α)A-4-6 
 
A |=4 #term(4.1.α)A-4-6, A <  term(4.1.α),  

term(4.1.α) == NB  
�C1 A |=4 A <  #NB

 A-4-7 

 
Message 5: 
A |=5 term(5.1.β) == term(2.1.α.3),  
         #term(2.1.α.3)A-2-4  
 �FT2 A |=5 #term(5.1.β)A-5-1 

 
B |=5 #term(5.1.α.γ) �FT1 #term(5.1)B-5-1, 
      
{B |=5 #term(5.1)B-5-1, B @ term(5.1) }; 
{A →5, B ←5}; A ≠ B �A1 A @ term(5.1)B-5-2 
 
B |=5 A @ term(5.1)B-5-2 �A2 B |=5 Aactive

5
 B-5-3 

 
{ B |=5 Aactive

5
 B-5-3, A @ term(5.1)B-5-2 }; 

{ A |=5 A @ term(5.1.β) }; A ≠ B  
�LN1 B |=5 A @ term(5.1.β)B-5-4 
 

{ B |=5 A @ term(5.1.β)B-5-4, Aactive
5

 B-5-3 }; 
{ A |=5 #term(5.1.β)A-5-1 }; A ≠ B 
�LN3 B |=5 #term(5.1.β)B-5-5 
 
Comments:  
B-5-4 and B-5-5 can also be derived using LN6, which may be simpler 
 
B |=5 term(5.1.β) == term(3.1.α.1), 
         #term(5.1.β)B-5-5 
�FT2 B |=5 #term(3.1.α.1) B-5-6 
 
B |=5 #term(3.1.α.1) B-5-6, B <  term(3.1.α.1), 
         term(3.1.α.1) == KAB 
�C1 B |=5 B <  #KAB

B-5-7 
 
Example 2 :   Yahalom  (protocol 2 in the introduction section)  
Why will A and B accept only fresh NA, NB, and KAB? 
1. A -> B: A, NA 

2. B -> S: B, {A, NA, NB}
↔KBS 

3. S -> A: {B, KAB, NA, NB}
↔KAS, {A, KAB}

↔KBS 

4. A -> B: {A, KAB}
↔KBS, {NB}

↔KAB 
 
Sketch of the rule applications are provided here 
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Message 1:    
A believe A can see a fresh NA by conclusion rule 
 
Message 2:   omitted. 
 
Message 3:    
• A sense the NA inside the first block, term(3.1),  
• By A1, A knows S can sense the firs block 
• By A2, A knows S is active at message 3. 
• By LN1, A learns that S can sense the KAB inside the first block of message 3 
• Since S believes KAB inside message 3 is fresh, and A knows S is active at message 3, A will learn that KAB in 

message 3 is fresh, which A can see.  
• A learn by LN4, A search back and knows that NA appears at message 2 and message 3. S can sense message 2.  
• A learns by LN1 that S can sense the NB inside message 2.  
• By LN5, A learns that the equivalence of the two NB inside message 2 and message 3.  
• Since NA appears in message 2, A knows that the block in message 2 is fresh, by FT1. 
• By A1 and A2, A knows that B is active at message 2.  B can sense message 2. 
• A learn from B that B can sense the NB inside message 2, By LN1. 
• Since B believes that NB is fresh in message 2, A will learn from B about it.  
• A knows the two NB in message 2 and message 3 is equivalent, so A will know that NB in message 3 is also fresh, which A can 

see.   
 
Message 4: 
• A believes that the KAB in message 4 is fresh 
• B sense the NB in message 4, and B believes that it is fresh.  
• B believes the second block in message 4 is fresh. And A must be active at message 4.  
• B learns from A that A can sense the KAB in the second block in message 4.  
• B learns from A that the KAB in the second block in message 4 is fresh, which B can see. 
• B search back and knows that NB appears in both message 2 and message 3. And S is both active at message 2 and message 3.  
• B learns from S that the two NA are equivalent in message 2 and message 3.  
• A learns from A that the NA in message 3 is fresh. 
• Since B knows that the two NA in message 2 and message 3 are equivalent, B knows that the NA in message 2 is fresh, which 

B can see. 
 
A knows NA is fresh since A originates NA. Similarly B knows NB is fresh. 
 
Example 3: Yahalom with message 2 changed : 

Why can A accept an old NB while B can only accept a fresh NA? Why A and B can still only accept fresh KAB? 
1. A -> B: A, NA 
2. B -> S: B, {A, NA}

↔KBS
 , {B, NB}↔KBS 

3. S -> A: {B, KAB, NA, NB}
↔KAS, {A, KAB}

↔KBS 
4. A -> B: {A, KAB}KBS, {NB}

↔KAB 
 
With the same reasoning as the original Yahalom, 
A |= A @ #term(3.1.1.2), A @ #KAB 
B |= #term(4.2.0), B @ #KAB, #term(3.1.1.3),  
     term(3.1.1.3) == term(2.2.1.2), #term(2.2.1.2) 
     B @ #NA 
 
But there is no way to generate A |= A @ #NB, because it is impossible to have A |= #term(2.2), while 
in the original Yahalom, A |= #term(2.2)   by searching back NA 
 
Example 4: Protocol 1 in the introduction session. 

1. A -> B: A  
2. B -> A: {X, M}KA 
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3. A -> B: {X, NA}KB 
4. B -> A: NA, {M, W}KA 

 
Sketch of the reasoning is provided here.  

In message 3, 
•  B sense the received fresh X, so B knows that A is active at message 3.  
• Then B learn from A that A can sense the NA inside message 3 and it is fresh, which B can see.  

 
In message 4,  

• A sense the fresh NA, A knows that B is active at message 4. 
•  By searching back using LN4, A knows that NA also appears in message 3, and B can sense it.  
• A knows that B is also active at message 3 and B can sense the X inside message 3. 
•  A learns from B that the X inside message 3 is fresh, which A can see.  
• Then A knows that the X inside message 2 is also fresh. 
• A knows B must be active at message 2.  
• A learns from B that the M inside message 2 is fresh, which A can see.  
• Then A knows that M inside message 4 is also fresh.  
• A knows that B must sense the second block in message 4, and the W inside it.  
• A learns from B that the W inside message 4 is fresh, which A can see.  

 
Appendix 2 

 
Suggestions to Optimize the Computation of Closure. 
   Since the same fact can be computed by different rules, we can organize the computation to remove the redundancy. 
The idea is that if a fact can be learned from other principals, then the fact does not need to be computed again.  

The following steps can simulate the behavior of the real world naturally in the style that the principals’ knowledge 
will be accumulated following the steps of the protocol.  
Reasoning Stage Steps:  
      Suppose the protocol has N messages. And for msgj 1 ≤ j ≤ N, then sender is Sj and the supposed receiver is Rj.  
For each message msgj in the protocol, starting from the first message to the last message, do the following. Only 
beliefs of the form P |=j facts, j ≤ i, is allowed to be used to apply rules. 
1.) Sj update knowledge(Sj) as much as possible. 
2.) Rj update knowledge(Rj) as much as possible, LN6 has the higher priority than other rules. So Rj will learn from 

LN6 first as much as possible before applying other rules to do reasoning. 
 
The above steps will collect the knowledge by the easiest way. What remains to be interesting is how to shut down 
some rule computations when the result facts of the rule computation are already known.  The full solution of this 
optimization is not shown in this paper. The following are some observation that we can take advantage of to design 
the optimal closure computation algorithm. 
1.) If Q is causally earlier than P and Q’s knowledge about fresh blocks is the same as P (not including the last block 

Q sent to P), then P and Q’s knowledge are the same and P does not need to do the reasoning the explore new 
knowledge. 

2.) The goal of the computation is to know whether a term is fresh or not, and its equivalent terms. So the 
computation can be divided to sub-problems of checking each term to know if it is fresh, and its equivalent terms. 
When a sub-problems is already computed (it can be learned from other principals), it does not need to be 
computed again.  


