Algorithmic Classification: Theory, Data, and Welfare

Maggie Penn & John Patty Emory University

Algorithms are used to guide high-stakes decisions about people

- Patients to treat
- Applicants approved for a loan
- Defendants that are granted bail
- Students admitted to a college
- Tax filers that are audited
- Communities police are deployed to

While algorithms may be opaque, people understand they're being classified, and may change their behavior in costly ways to obtain a good classification outcome

- Prospect of audit makes tax filers less likely to cheat
- Prospect of standardized test makes student more likely to study
- Prospect of good credit score drives responsible financial choices

These behavioral incentives may differ by group

• If I understand that it's very unlikely that a woman will be hired for a job even if qualified for it, I (as a woman) will have less of an incentive to exert costly effort to obtain qualification

This project

- An algorithm with a **general objective function** is designed to **classify a group of people**
 - Objectives can be with respect to both the **behavior** people engage in and **how they are classified**
 - Accuracy maximization, compliance maximization, revenue maximization, hiring qualified workers, etc.
- People want to obtain a **good classification** outcome, and can engage in a **behavior** ("compliance") to obtain a better outcome
- The algorithm is designed to maximize its objective, knowing that people will respond to it (a Stackelberg game)

A few takeaways on algorithms, keeping the EITM paradigm in mind

- Most work on algorithmic fairness focuses on the **statistical accuracy** of classifiers
 - Without a theory of individual incentives and behavior, these statistical fairness measures can be grossly misleading
 - While considered a gold standard in classification, we show that accuracy maximization can drive inequality across groups
- The link between between algorithmic objectives & welfare is not direct, though algorithms are often described in normative terms
 - Increasing algorithm's "taste for punishment" (making it more predatory) can be **Pareto improving**
- **EITM takeaway**: Using data to make normative judgments about human outcomes requires an explicit theory of what people want!

The Model (Individuals)

- A unit mass of **individuals** N, with $i \in N$
- Each person chooses a costly behavior β_i ∈ {0,1}
 ("compliance")
 - $-\beta_i \in B$ represents an activity that each person will be **classified**, and **potentially rewarded**, on the basis of
- Person *i* pays **private cost** γ_i to choose $\beta_i = 1$
 - Costs γ distributed with CDF F
 - **Example**: β_i captures "lawfulness" and γ_i is *i*'s "cost to being lawful"

The Algorithm

- Algorithm observes **signal** s_i about behavior β_i drawn from behavior-dependent PDF g_β (g_1 and g_0 satisfy the MLRP)
 - The higher the signal, the more likely it was that the person complied
- Signal could be a unidimensional **test result**
- Or we can think of each person's set of covariates $x_i \in X$ as associated with a **likelihood ratio** that *is* the signal

$$s_i = \frac{P(x_i|\beta_i = 1)}{P(x_i|\beta_i = 0)}$$

Example of signal distributions conditional on behavior β

Classification

- After observing signal s the algorithm makes a binary classification decision for each person, d_i ∈ {0,1}
- The algorithm's **strategy** δ maps each signal s_i into a probability of reward:

$$\delta(s) = \Pr[d_i = 1|s_i]$$

• If $d_i = 1$ then *i* gets a **reward**, if $d_i = 0$ then *i* pays a **penalty**

Individual Payoffs

• Each person receives the following payoff:

$$u(\beta_i, d_i | \gamma_i) = \underbrace{r \cdot d_i}_{\text{bonus if classified 1}} - \underbrace{\gamma_i \cdot \beta_i}_{\text{cost if compliant}}$$

r > 0 is an exogenous parameter capturing the
 "stakes" to classification

r = (reward if classified d = 1) - (penalty if classified d = 0)

 \Rightarrow People benefit from receiving a positive classification

Individual Behavior

• The individual's **incentives** $\Delta(\delta)$ capture the net benefit to any person of choosing $\beta_i = 1$ over $\beta_i = 0$

$$\Delta(\delta) = r \int_{s \in \mathbf{R}} (g_1(s) - g_0(s)) \cdot \delta(s) ds$$

• A person chooses $\beta_i = 1$ if:

- Algorithm is "behaviorally null" if $\Delta(\delta) = 0$
 - If stakes to classification r = 0
 - If $\delta(s) = c$ for all s (algorithm classifies everyone the same way)

The Algorithm's Objectives

	Decision				
Behavior	$d_i = 1$	$d_i = 0$			
$\beta_i = 1$	A_1	A_0			
	(True Positive)	(False Negative)			
$\beta_i = 0$	B_0	B_1			
	(False Positive)	(True Negative)			

Algorithm receives "payoff" $A_1, A_0, B_1, B_0 \in \mathbf{R}$ for % of people that fall into each cell

Algorithm optimally designed to generate behavior (β) and bin signals of behavior (d) into most beneficial cells of matrix

Two Examples of Algorithm Objectives

Timing of Decisions

- 1. People **privately observe their costs** to compliance, γ_i
- 2. An algorithm $\delta(s)$ is publicly chosen / committed to
 - Algorithm knows cost distribution F, signal distributions g_β
- 3. People make their compliance decisions $\beta_i \in \{0, 1\}$
- 4. Signals are generated and classified according to algorithm $\delta(s)$
- 5. Payoffs are distributed to people and the algorithm

Optimal classifiers have a simple characterization

 The "best" algorithm sets a cutpoint *τ*^{*} ∈ **R** ∪ ±∞ and utilizes either a **threshold** or **negative threshold** rule

Threshold rule

$$\overline{\tau}^*(s_i) = \begin{cases} 1 & \text{if } s_i \geq \overline{\tau}^* \\ 0 & \text{otherwise.} \end{cases}$$

Negative threshold rule

$$\underline{\tau}^*(s_i) = \begin{cases} 0 & \text{if } s_i \ge \underline{\tau}^* \\ 1 & \text{otherwise.} \end{cases}$$

How can negative threshold rules be optimal?

- These rules punish people with signals *above* some threshold, so those more likely to have complied are punished
- This disincentivizes compliance
 - Designer might have a direct taste for non-compliant behavior
 - Or inducing non-compliance might make other goals
 (e.g. accuracy!) easier to achieve
- A negative threshold is "cheapest" way to induce non-compliance
 - Provides greatest behavioral incentive to not comply (MLRP)
 - Fewest misclassifications in the tail of the signal distribution

Example: Accuracy maximization drives inequality

- Consider two groups that differ in their members' average costs to compliance
- Low cost group has costs distributed $N[\frac{1}{2}, 1]$
 - 31% of the population complies without any extrinsic incentives
- **High cost group** has costs distributed $N[\frac{3}{4}, 1]$
 - 23% of the population complies without any extrinsic incentives

Most Accurate Classifiers for the Two Groups

- For the **low-cost** group, the most accurate classifier is a positive threshold rule with $\overline{\tau}^* \approx -0.2$
 - Equilibrium compliance is 85% (increased from 31%)
 - This classifier is 81% accurate
- For the **high-cost** group, the most accurate classifier is a negative threshold rule with $\underline{\tau}^* \approx -1.4$
 - Equilibrium compliance is 13% (decreased from 23%)
 - This classifier is 80% accurate

Stakes r = 5 and signal distributions are $g_0 = N[0, 1]$ and $g_1 = N[1, 1]$

Takeaways about "most accurate" algorithms

- Accuracy motivations often thought of as fair or neutral
 - The algorithmic fairness literature focuses largely on statistical error rates across groups in classification outcomes
 - Here, both groups are correctly classified \approx 80% of the time
 - But the algorithm incentivizes **opposite** behavior for the groups, exacerbating a kind of societal/behavioral inequality across the groups
- Because data and behavior are **performative** (respond to the algorithm), accuracy-maximization entails manipulating behavior to overcome noisy data

How robust is this example?

Proposition

For any reward r > 0 and any signal accuracy we can find two cost distributions F_X and F_Y for which the accuracy maximizing designer

- strictly incentivizes compliance for Group \boldsymbol{X} and
- strictly incentivizes non-compliance for Group \boldsymbol{Y}

Example: Algorithm objectives and social welfare

Accuracy			Accurate $+$ predatory			
	$d_i = 1$	$d_i = 0$		$d_i = 1$	$d_i = 0$	
$\beta_i = 1$	$A_1 = 1$	$A_0 = 0$	$\beta_i = 1$	$A_1 = 1$	$A_0 = 0.5$	
$\beta_i = 0$	$B_0 = 0$	$B_1 = 1$	$\beta_i = 0$	$B_0 = 0$	$B_1 = 1.5$	

- Most accurate algorithm sets $\overline{ au}^* = \mathbf{0.462}$, yields 98% compliance
- "Predatory" algorithm sets $\overline{ au}^* = \mathbf{0.125}$, yields 96% compliance
- The predatory algorithm is more lenient, and is ex ante preferred to the most accurate algorithm **by every person being classified**

Costs $\gamma \sim N[0, 1]$, stakes r = 2, signals $g_0(s) = N[0, 0.1], g_1(s) = N[1, 0.1].$

Takeaways: Algorithm objectives and social welfare

- Without a theory of individual preferences, there's no reason to think accurate classification is desirable from standpoint of those classified
- (More provocatively?) we should be careful using an algorithm's objectives to make welfare judgments without a theory of behavior
 - In this case, directly increasing the algorithm's "taste" for punishment (giving it a payoff bump for every d = 0) strictly benefits every person in expectation

Conclusions

- The prospect of being classified affects the **life choices people make**
- When data are **performative** (respond to how the data are used, as is often true of data about *people*) we need a theory of the data generating process to make normative judgments
- Fairness with respect to how data are used (e.g. statistical accuracy) might be at odds with fairness in the data generating process
- EITM can help us make sense of these tensions!

Related Literature

- Algorithmic Fairness & Welfare (Hu & Chen, 2019; Liang & Lu, 2024)
 - Welfare effects of fair classification with fixed outcomes
- Behavioral Effects of Classification Design
 - (Jung, *et al*, 2020; Coate & Loury, 1993)
 - Theoretically proximate; Jung considers compliance maximization;
 Coate models a simultaneous move game with multiple equilibria
- Strategic Classification / Performative Prediction
 - (Hardt, et al, 2016; Hu, et al 2018; Perdomo, et al, 2021)
 - Classification with endogenous (observable) data
- Outcome Performativity (Kim & Perdomo, 2023)
 - Classification with endogenous *outcomes*
 - Focus is whether data/outcomes can be <u>learned</u>; we assume alg knows how data respond to it (our focus is behavior & welfare)