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Background: Schooling is considered one of the major contributors to the development of intelligence within
societies and individuals. Genetic variation might modulate the impact of schooling and explain, at least partially, the
presence of individual differences in classrooms. Method: We studied a sample of 1,502 children (mean
age = 11.7 years) from Zambia. Approximately 57% of these children were enrolled in school, and the rest were
not. To quantify genetic variation, we investigated a number of common polymorphisms in the catechol-O-meth-
yltransferase (COMT) gene that controls the production of the protein thought to account for >60% of the dopamine
degradation in the prefrontal cortex. Results: Haplotype analyses generated results ranging from the presence to
absence of significant interactions between a number of COMT haplotypes and indicators of schooling (i.e., in- vs.
out-of-school and grade completed) in the prediction of nonverbal intelligence, depending on the parameter
specification. However, an investigation of the distribution of corresponding p-values suggested that these positive
results were false. Conclusions: Convincing evidence that the variation in the COMT gene is associated with
individual differences in nonverbal intelligence either directly or through interactions with schooling was not found.
p-values produced by the method of testing for haplotype effects employed here may be sensitive to parameter
settings, invalid under default settings, and should be checked for validity through simulation. Keywords:
Schooling, nonverbal intelligence, the COMT gene, haplotype analysis, haplo.glm, interaction effects.

Introduction
It seems obvious to state that schooling makes a
difference in individual developmental and life out-
comes, and that it strongly influences who will
contribute to society at large and what kind of
contributions will be made (Lutz & KC, 2011). In
developed (i.e., high-income) countries (The World
Bank, 2013a), it is generally taken for granted that
formal schooling is closely linked to both individual
(Bronfenbrenner, McClelland, Wethington, Moen, &
Ceci, 1996) and social (Glaeser, Laibson, & Sacer-
dote, 2002) capital – that is, it contributes signifi-
cantly to an individual’s worth both to him- or herself
and to society at large. Correspondingly, schooling is
viewed both as the primary developmental task and
as the main accomplishment of such countries’
young members prior to entry into adulthood. These
societies require schooling and stipulate the mini-
mum number of years their youngsters are expected
to spend in school; but these requirements and
stipulations are not universal. In postindustrial
economies, 96% of their school-aged members are
engaged in regular or special education, whereas in
emerging economies (less and least developed coun-
tries), these percentages are about 85% and 65%,
respectively (UNICEF, 2009).

The role of formal schooling in developing (i.e., low-
and middle-income) economies is much more tan-

gential to both social (Godoy et al., 2008) and
individual (Serpell, 1993) capital; it is not uniformly
viewed as either a requirement or as an accomplish-
ment, so parents decide which of their children (if
any) should or should not go to school (Brock &
Levers, 2007). Primarily due to the uncertainty of the
role of formal schooling in developing countries
(Grigorenko, Hein, & Reich, in press; Grigorenko
et al., 2001; Serpell & Jere-Folotiya, 2008), but also
due to other characteristics of these societies (e.g.,
shortage of funds, societal conflict, and economic
instability), many children in low- and mid-
dle-income countries are not enrolled in formal
education. For example, in 2010, about 132 million
children of primary and lower secondary school age
were not being schooled formally (UNICEF, 2013);
approximately half of these out-of-school children
lived in sub-Saharan Africa (UNESCO, 2008).

Yet, the impact of schooling, regardless of the
magnitude of its main effect, is not homogeneous;
individual differences in classrooms among both
students and teachers remain the object of investi-
gation of large subfields in psychology and educa-
tion. To explain the presence of these differences,
chiefly, three different hypotheses have been inves-
tigated. First, it has been assumed that these differ-
ences are due to the impact of underlying genetic
factors that influence either general cognitive (e.g.,
Plomin et al., 2004) or scholastic (e.g., Martin et al.,
2011) performance, although recent large-scale rein-
vestigations of the previously published data suggest
that, if they exist, these effects are of very small
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magnitude and cannot, when conceived additively,
explain the observed broad range of variability in
individual differences in the classroom (Chabris
et al., 2012; Rietveld et al., 2013; for intelligence
and educational attainment, correspondingly). Sec-
ond, it has been argued that classroom-based indi-
vidual differences arise differentially, depending on
the quality of instruction, so that genetic influences
are pronounced more in higher and less in lower
quality classrooms (Taylor, Roehrig, Soden Hensler,
Connor, & Schatschneider, 2010). It has also been
assumed that genetic factors shape the parameters of
brain structure and function (Kwan, �Sestan, &Anton,
2012), which, in turn, determine the parameters of
basic information processing functions (Rowe et al.,
2007); these, in turn, underlie the high (.45–.80)
correlations between cognitive and scholastic perfor-
mance (Luo, Thompson,&Detterman, 2003). It is this
third hypothesis that seems to be particularly inter-
esting for an investigation in societies where school-
ing is not universal, where the impact of schooling can
be differential for individuals differentiated by char-
acteristics of basic information processing functions
and, in turn, by the parameters of their brain func-
tioning, and, correspondingly, by the variation in the
genome which defines these parameters.

To quantify the relevant genetic variation, we geno-
typed selectedmarkers in the catechol-O-methyltrans-
ferase (COMT) gene (MIM116790, 22q11). The enzyme
produced by this gene is involved in the degradation of
catecholamines (dopamine, epinephrine, and norepi-
nephrine) and, through its participation in dopamine
turnover, is related toneural functioning.COMT issaid
toaccount for>60%of thedopaminedegradation in the
prefrontal cortex (PFC); thus, it plays an important role
in regulating dopamine levels in the PFC and, corre-
spondingly, in psychological processes, both lower
(e.g., reaction and inspection time) and higher (e.g.,
metacognitive functions) thatengagethePFC(Karoum,
Chrapusta, & Egan, 1994).

Two isoforms of COMT exist: the soluble isoform
(S-COMT) and the membrane-bound isoform
(MB-COMT). These are regulated by different promot-
ers, are of different lengths (221 and 271 amino-acid
residues, respectively), and have different functions.
Structural DNA variants within this gene and in its
near vicinity within noncoding regions have been
associated with individual differences in a number of
cognitive and affective processes, indicators of brain
activity, and neuropsychiatric conditions (Dickinson
& Elvev�ag, 2009). The pleiotropic nature of the COMT

gene action has been related to the complex dynamics
of cognitive and affective functions (Mier, Kirsch, &
Meyer-Lindenberg, 2010; Papaleo et al., 2008; Tun-
bridge, Harrison, & Weinberger, 2006).

The most studied polymorphic variant of the COMT

gene is a single nucleotide changeG/A (also known as
the rs4680 single nucleotide polymorphism, SNP),
resulting in an amino-acid substitution of valine (Val)
with methionine (Met) at codon 108 for S-COMT and

codon 158 for MB-COMT (Val108/158Met) generat-
ing alternative forms of COMT with different func-
tional properties (Lachman et al., 1996). Yet, the gene
has other numerous polymorphisms that have been
extensively studied in isolation, in combination with
the rs4680 polymorphism, and in haplotype struc-
tures representative of the gene (Witte & Floel, 2012).
Of note also is that the variation in theCOMT gene has
been previously associated with individual differ-
ences in IQ (Payton, 2009), academic attainment
(Enoch, Waheed, Harris, Albaugh, & Goldman, 2009;
Yeh, Chang, Hu, Yeh, & Lin, 2009), and numerous
PFC-rooted processes (Lundwall, Guo, & Dannemil-
ler, 2012; Stormer, Passow, Biesenack, & Li, 2012).

Here, we investigated the effect of schooling on
levels of nonverbal intelligence in a sample of children
from a developing country. Our specific hypothesis is
that, assuming that schooling is the major causal
factor in levels of intelligence around the world,
genetic variation (specifically, genetic variation in
the COMT gene) might modulate the impact of school-
ing and help explain, at least partially, the presence of
individual differences in classrooms. To verify this
hypothesis,weascertainedasample of childrenwitha
graded amount of exposure to schooling and assessed
them behaviorally and genotypically.

Methods
Study site

Zambia is a lowermiddle-income country in sub-Sah-
aran Africa with a population of about 13.5 million
(The World Bank, 2013b) people (99.5% Africans
representing various local tribes), of whom approxi-
mately 45% are children younger than 14 years of
age. In 2001, the gross school enrollment rate was
estimated at 76.9% and the net enrollment rate at
65.1%,with 55.6%of the children at the intake year of
age 7 not enrolled in schools (Riddel, 2003). English is
the official language, but Zambia’s people speak a
number of major vernaculars (Bemba, Kaonde, Lozi,
Lunda, Luvale, Nyanja, and Tonga) and about 70
other indigenous dialects. This study was carried out
in a region of the Eastern Province of Zambia, where
the dominant language is Chewa (also known as
Nyanja) – a language of the Bantu language family.
Although English is the primary language in schools
for instruction, it is mandated that children learn to
read, upon school entry, in one of the officially
designated mother tongues; after 1 year of schooling,
they are taught to read in English.

Participants

In Zambia, school enrollment is based on a geo-
graphic principle such that a given public school
serves a local community (or a number of commu-
nities). Using a list of all of the public schools in the
Chipata-Chadiza area, we selected, at random,
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schools that were either rural or semi-rural/
semiurban (i.e., located in or close to Chipata or
Chadiza). Knowing the sizes of the schools, we
included only those schools that had at least 10
students on their enrollment rosters in each of the
grades we worked with (grades 2–6). This was
necessary because of the high rate of absenteeism
in Zambian government schools. In addition, we
attempted to include both rural and semi-rural/
semi-urban schools in such proportions that the
resulting sample included children from these types
of areas in approximately equal portions. As rural
schools, especially those in remote areas, tend to be
smaller in size, there were more rural schools. After
the schools were selected, each school was
approached for consent to participate, the proce-
dures of the study were explained, and participant
lists were generated. In each school, we attempted to
recruit approximately 20% of its students in each
grade. To reach this recruitment goal, the initial lists
were created for twice as many children, 40% (i.e., to
oversample at this stage). These children were
selected at random (i.e., selecting a student by his
or her number on the school roster), but the number
of boys and girls was monitored to be approximately
equal; the researchers compiling these lists were
blind to the tribal affiliation, family constellation,
health condition, or academic achievement of the
selected children. When these lists were generated,
exclusion criteria were applied based on (a) the
presence of known physical or mental disabilities,
and (b) the mother tongue being other than Nyanja
(i.e., children primarily from the Chewa, Ngoni,
Kunda, and other smaller tribes). We did not sample
from grade 1 to avoid recruiting children who had
not yet experienced a full year of schooling. Children
were excluded if they had any known physical or
mental disabilities (physical handicap, hearing and/
or vision problems, and mental health problems).
When the lists were revised, the testing date for a
given school was scheduled; the duration of testing
at a given school depended on the size of the school.
Regardless, the testing of each individual child was
completed within 1 day. If the list of participants
included children who were absent for the duration
of the testing period at a given school, they were not
included in the data collection. We compiled lists of
out-of-school children by working in parallel with the
school and the community (or communities) served
by the school. To match the selection procedure, we
attempted to recruit children whose ages corre-
sponded to those in the school sample (i.e., ~20%
in each age band). Similarly, we monitored the
number of boys and girls in the sample to ensure
an equal gender distribution or to match the pro-
portion of those absent. All testing was carried out on
school grounds. The research team members who
administered the tests were unaware of each child’s
school attendance status (in- or out-of-school). The
resulting sample of in-school children included 862

children (49.0% boys, mean age = 11.8 years,
SD = 2.34). We also worked with local communities
and identified children who were not enrolled in
school that year (n = 640, 53.6% boys; mean
age = 11.7 years, SD = 3.64); of these children, 539
had had at least one full year of schooling and 101
had never been formally enrolled in school. The
majority (932 or 62.1%) of children were from rural
areas. Our total sample thus included 1,502 children
(50.9% boys, mean age = 11.7 years, SD = 2.97).

Materials

To assess cognitive abilities within this sample of
Zambian children, we used nonverbal measures of
reasoning and memory. Specifically, we chose three
subtests of the Universal Nonverbal Intelligence Test,

UNIT (Bracken & McCallum, 1998). These assess-
ments have been evaluated for use with Nyan-
ja-speaking children (Stemler et al., 2009). The
UNIT is an individually administered ability test that
measures the general intelligence of children/youth
aged 5–17 years. We used the Symbolic Memory
(SyM), Cube Design (CD), and Spatial Memory (SpM)
subtests of the UNIT to sample both memory (sym-
bolic and nonsymbolic) and reasoning; a single
indicator of nonverbal intelligence (NI) was then
constructed. The distribution of NI values in the
subgroups of our sample is shown in Figure 1.

To control for the socioeconomic status (SES) of
the households of the children, a 17-item question-
naire was administered that gathered information
regarding the characteristics of each family’s living
conditions (family size, structure, and living arrange-
ments), levels of education and earnings of caregiv-
ers, sanitary/hygiene conditions (e.g., whether
cooking was done inside or outside, whether there
was running water, whether there was a latrine and
of what kind), and the presence of entertainment
(printed materials, radio, and TV) and luxury items
(e.g., car). The data from the questionnaire were
subjected to a principal-component analysis, where
the first component explained 26.4% of the variance
and the remaining components explained less than
11% each (i.e., the second principal component
explained 10.3%, the third, 8.1%, and so forth).
The standardized scores on the first principal com-
ponent were used in subsequent analyses.

Genotyping

We sampled the COMT gene through five SNPs
(rs737865, rs740603, rs165722, rs4680, and
rs165599) attempting to capture variation using
information on the amount of linkage disequilibrium
(LD) in the COMT gene from the Yoruba population in
HapMap (http://hapmap.ncbi.nlm.nih.gov/) and
eight different African populations (Mukherjee et al.,
2010). The SNPs were selected based on their
reported associations with different cognitive and
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neuropsychiatric outcomes and derived allele fre-
quencies in the studied African populations (http://
alfred.med.yale.edu/). Supplemental online material
presents corresponding allele/genotype (Table S1)
and haplotype (Table S2) frequencies, and the
amount of LD in the gene in this sample (Table S3).

Statistical analyses

For each of the five SNPs, a linear regression model to
predict NI on the basis of demographic, schooling,
and genetic (single marker) variables was fit using R
software (R Development Core Team, 2011). The
number of copies of the ancestral allele at each SNP
was tabulated for each participant and included as
genetic variables in the regression models; each
model included the main effects of all variables and
interaction effects for the SNP genotype and school-
ing status. Both single-marker and haplotype anal-
yses were performed. To evaluate the predictive
power of single markers, we used multiple regression
analyses. To evaluate the predictive power of haplo-
types, we used a haplotype regression method (Lake
et al., 2003; Schaid, Rowland, Tines, Jacobson, &
Poland, 2002), as implemented in the R haplo.stats
library (http://mayoresearch.mayo.edu/mayo/
research/schaid_lab/software.cfm). This method
assigns weights to the various haplotype pairs that
are consistent with an individual’s genotypic data
and allows for the recursive estimation of haplotype
frequencies and effects. Inferences about haplotype
effects are made through a weighted linear regression
in the ‘M’ step of this EM-type algorithm. In these
analyses, we investigated all possible combinations
of two, three, four, and five marker haplotypes. Wald
statistics were computed to test the significance of
haplotype effects (both main and interaction), and
(unadjusted) proportions of variance explained by all
haplotype variables were calculated to measure the
effect size of the genetic contribution in predicting NI.

One seemingly technical parameter setting in the
haplo.stats library involves specifying a threshold
frequency such that each haplotype with an esti-
mated frequency above this threshold is included as
a separate category for the haplotype, while haplo-
types with estimated frequencies below the threshold
are combined into a single category. The default
setting for this threshold in the haplo.stats library is
1%. However, simulations on datasets in which no
haplotype effect is present (obtained by permuting
either the NI values, to simulate no relationship of NI
to any variable, or by permuting the genotype values,
to simulate no relationship between NI and genetic
effects but maintaining the relationship with envi-
ronment) suggest that such a small haplotype fre-
quency threshold can yield very inflated rates of Type
I error for haplotype effects, perhaps through over-
fitting to the data by inclusion of multiple low-
frequency, low-signal haplotypes. As the haplotype
frequency threshold increases, however, the number
of haplotype effects included in the model shrinks,
and potentially biologically interesting haplotypes
are excluded from analysis. As a compromise
between these competing considerations, we
attempted to select the smallest haplotype frequency
threshold that was consistent with a uniform distri-
bution of p-values (tested by a Kolmogorov–Smirnov
test) on datasets simulated under the null hypothesis
of no haplotype effect. Haplotype frequency thresh-
olds of 10% were sufficient to achieve uniformity for
all combinations of SNPs when NI was permuted.

Results
We fit regression equations predicting the level of NI
based on the child’s demographic characteristics
(age, sex, rural vs. urban, family SES) and schooling
status (currently out of school and grade completed).
These variables explained a substantial proportion
of the variance in NI and its components (see
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Figure 1 NI scores in the study samples, stratified by age, gender (Male or Female), location (Rural or Urban), and amount of schooling
(In = currently enrolled; Out =currently not enrolled). NI scores are presented using T-scores (mean = 50 and SD = 10)
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Table 1). As anticipated based on the data presented
in Figure 1, there were strong and consistent effects
of age (older children performed better than younger
children), location (rural vs. urban, with rural chil-
dren performing worse than urban children), SES
(children from families with higher level of SES
obtaining higher NI scores), and somewhat weaker
and inconsistent effects of gender (girls tending to
perform worse than boys). Predictably, there were
also strong and consistent effects of schooling status
so that being currently enrolled in school and being
in a higher grade were predictive of higher NI scores.
Although fluctuating when obtained from different
regression equations, all these effects were signifi-
cant and substantial – they explained approximately
38% of the variance in NI.

To investigate the degree of association between
variation in the SNPs and the level of NI, regression
analyses were carried out in which all of the main
effects and interaction effects between particular
genetic variants and schooling status were included.
When genetic variants of the COMT gene were
considered individually, the evidence supporting
the association between COMT variation and levels
of NI was inconsistent. There was no association
between the main effects of any individual SNP and
NI scores. However, when regressions predicting the
subtest scores (SyM, CD, and SpM) were considered,
we found the main effect for SNP rs165722 to be
significant for predicting the SpM score. SNPs
rs737865 and rs165722 showed significant interac-
tions with schooling in predicting NI and one of the
subtest scores each (SyM for rs737865 and SpM for
rs165722). We interpreted this pattern of findings as
suggestive of an association between genetic varia-
tion in the COMT gene and individual differences in
NI, but this association could not be attributed to a
particular SNP.

Accordingly, we investigated the possibility that
the variation in the COMT gene may be associated
with the variation in NI via the gene’s haplotypes.
The level of LD in the coding region of the COMT gene
was shown to be relatively low in Africa (Mukherjee
et al., 2010). Pairwise LD was estimated by r2 and D’

(Table S3). Our findings concur with those in the
literature, indicating, in general, low levels of LD in
the COMT gene in this Nyanja-speaking sample from
Zambia. Yet, three SNPs, rs165722, rs4680, and
rs165599, demonstrated the presence of LD pair-
wise. Table 2 presents the results of the haplotype
regression models with statistically significant
results of the Wald test using the default haplotype
frequency threshold of 1%, after correcting for
multiple comparisons using a Bonferroni correction
with 52 tests (26 sets of markers for both main and
main + interaction effects). The proportion of the
variance explained by COMT haplotypes averaged at
around 6.6% and reached as high as 10.7%. How-
ever, p-values obtained for these marker combina-
tions from simulated datasets in which NI was
permuted were distinctly nonuniform and extremely
biased toward zero, suggesting that the reported
p-values were likely to indicate false positives.

When the haplotype frequency threshold was
increased to 10%, which was sufficient to mitigate
the nonuniformity of p-values when NI was
permuted, the proportions of variance explained were
reduced and the p-values were increased consider-
ably. Two sets of SNPs still achieved, after an
appropriate Bonferroni correction, similar levels of
statistical significance using this setting:
rs740603-rs165722-rs4680 and rs727865-rs7406
03-rs165722-rs165599. Graphical representations
of the interaction between grade completed and the
three most common haplotypes for rs737865-rs7406
03-rs165722-rs165599 are shown in Figure 2 (a,b).
However, the interaction term p-values obtained by
permutation for these two combinations of markers
were still nonuniform (Kolmogorov–Smirnov tests
p-values were p = 2.96E-5 and p < 2.2E-16,
respectively) and biased toward zero when
genotypes were permuted instead of NI. Permuting
genotypes seems more appropriate than permuting
NI, as permuting genotypes gives data simulated
from the null hypothesis while preserving the rela-
tionship between NI and environmental variables.
Using a haplotype frequency threshold of 15%
yielded no statistically significant combinations of
SNPs after the Bonferroni correction. Histograms of
p-values from permutations of NI and genotype
values are shown in Figure 3.

In brief, these results initially suggested that, after
accounting for the presence and duration of school-
ing and such demographic variables as age, gender,
location (urban vs. rural), and SES, a sizeable
amount of variance in NI can be associated with
genetic variation, in particular, variation in the
COMT gene. The interactions between haplotypes

Table 1 Predicting levels of NI by children’s age, gender,
location, and schooling status

Variable B SE b p-value

Constant 39.15 2.46 <.001
Age 0.40 0.11 .12 <.001
Gender (Girls) �1.02 0.42 �.05 .016
Type of
residence
(Rural)

�2.20 0.51 �.10 <.001

SES 1.35 0.13 .26 <.001
Schooling

Out of
school (Yes)

1.37 2.35 .01 .56

Grade
completed

2.39 0.20 .38 <.001

R2 = .377, F(5,1415) = 142.7 (p < 2.2e-16)

With SyM, CD, and SpM as dependent variables, barring the
Gender variable, all other variables exert similar influence.
Gender does not have a significant effect when predicting SyM
(p-value .63), and with CD and SpM, it has a similar negative
effect as above (p-values .00071 and .061, respectively). R2 for
these were .204, .285 and .341, respectively.
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and years of schooling seemed particularly notewor-
thy, as seen by the extremely small p-values
obtained for the interaction effects. However, simu-
lations in which the relationship between NI and
haplotypes are removed also yield extremely small
p-values, suggesting that the reported p-values may
not reflect valid statistical significance of haplotype
effects and instead may be a result of inflated Type I
error. The risk of Type I error can be reduced
somewhat by increasing the haplotype frequency
threshold above the default setting, but doing so
might preclude the possibility of detecting any effects
of biologically meaningful haplotypes.

Discussion
Although schooling is one of the strongest environ-
mental effects, few, if any, studies have considered
whether and how the effect of schooling is differen-
tiated for different genotypes or haplotypes. Such an
inquiry appears promising as an attempt to under-
stand why, under the powerful influence of schooling
as a main effect, there is still a tremendous amount
of individual differences among children in the same
classroom. To our knowledge, this is one of the first
inquiries to examine such differentiation. To perform
such an inquiry, we utilized a large out-of-school
cohort of children, in which a number of polymor-
phic sites of the COMT gene were genotyped. Three
commentaries can be drawn from these analyses.

First, in accordance with the larger body of litera-
ture that investigates the effects of schooling on IQ in

both high- (Stelzl, Merz, Ehlers, & Remer, 1995) and
low-income (Jukes & Grigorenko, 2010) countries,
these data show a direct association between current
school enrollment, duration of schooling, and level of
NI. The natural experiment/observational study cap-
tured here, in which a substantial number of children
were not, at least during the academic year of the
study, enrolled in school, is particularly noteworthy.
Such a situation is impossible to observe in
high income countries. Of interest also is the obser-
vation that, on average, children who have had
inconsistent schooling or no schooling demonstrate
similar levels of NI. Furthermore, these children show
substantially lower NI compared with children in
school, notwithstanding the presence of high per-
formers in both groups of out-of-school children.
Perhaps this observation points to the importance of
continuous schooling; a haphazard education, inter-
rupted by periods of being out of school, appears to
be less effective in supporting intellectual develop-
ment than continuous enrollment.

Second, there appears to be no convincing statis-
tically significant genetic effects on NI present in our
sample, whether modeled in a straightforward linear
regression or in a more sophisticated haplotype
regression. Although the COMT gene seemed to be
a plausible candidate for being one of the carriers of
genetic effects, assumed to be relevant to under-
standing the presence of individual differences in
response to intervention (Conti & Heckman, 2010),
in this study, no statistically convincing evidence for
the relevance of the variation in COMT to these

Table 2 Genetic association analyses for indicators of nonverbal intelligence (NI) and COMT haplotypes

Haplotype

Haplotype frequency
threshold of 1% (default)

Haplotype frequency
threshold of 10%

Haplotype frequency
threshold of 15%

Nominal p-value
% Variance
Explained by
Haplotypes

Nominal p-value
% Variance
Explained by
Haplotypes

Nominal
p-value

% Variance
Explained

by Haplotypes
Main &
Inter Inter

Main &
Inter Inter

Main &
Inter Inter

1,2,3 1.22E-07 .000118 5.94% .029 .022 1.90% .029 .022 1.90%
1,2,5 .000638 .00715 3.87% .877 .892 0.20% .693 .698 0.08%
1,3,5 <1E-15 .00085 3.32% .009 .005 1.07% .009 .005 1.07%
2,3,4 1.81E-08 6.25E-06 5.59% .00057 .0036 3.06% .596 .370 0.32%
2,3,5 2.41E-12 6.59E-07 7.05% .004 .026 2.86% .693 .698 1.30%
1,2,3,4 4.03E-12 7.05E-09 8.25% .017 .005 1.84% .692 .556 0.26%
1,2,3,5 <1E-15 6.46E-09 10.73% 1.05E-6 1.32E-4 4.19% .613 .518 0.18%
1,3,4,5 8.43E-06 7.85E-05 3.05% .129 .057 0.89% .042 .250 0.56%
2,3,4,5 4.88E-15 3.08E-05 9.40% .904 .827 0.16% .641 .511 0.13%
1,2,3,4,5 9.81E-12 9.22E-05 9.06% .761 .674 0.11% .761 .674 0.11%

SNPs: 1 = rs737865, 2 = rs740603, 3 = rs165722, 4 = rs4680, 5 = rs165599. For each set of SNP loci and haplotype frequency
threshold, we tested two null hypotheses: (a) haplotypes have no main effects and no interactive effects with either schooling variable
(Out of School or Grade Completed) (Main & Inter), and (b) no interactions between haplotypes and either schooling variable
(allowing for main effects of haplotypes) (Inter). For each combination of loci, we calculated a proportion of variability explained by
the corresponding haplotypes by making use of two regressions, the first being a standard multiple regression using only the
nongenetic covariates and the second being the weighted least squares regression done in the last (converged) step of the haplotype
regression EM algorithm. The explained proportion of variability was found by dividing the difference between the variabilities of the
fitted values of the two regressions by the total variability in the NI values. Marker combinations reported in this table have nominal
p-values under .05/52 � .00096 using the default haplotype frequency threshold of 1%. Marker combinations shown in bold font
also have nominal p-values under .05/52 � .00096 using a haplotype frequency threshold of 10%, which limits the degree of
overfitting allowed by the model. When a haplotype frequency threshold of 15% is used, no marker combinations achieved statistical
significance at the .05/52 � .00096 level.
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differences was mounted. Of note is that, given the
homogeneity of our sample with regard to the struc-
ture of the general population from which it was
drawn, the distribution of social-economic factors,
and the sameness of schooling in this geographic
region, this sample was rather advantageous for
detecting these effects. Thus, even though, given
consistently high heritability estimates for all school-
ing-related phenotypes, there is a great deal of
interest in understanding the etiology of these
differences, anchoring them in specific genes might
turn out to be a difficult task. It may be that the
starting point in such analyses should consider not
single, but multiple genes and their interactions
(Zuk, Hechter, Sunyaev, & Lander, 2013).

Third, the use of a statistical software package for
haplotype regression “out of the box” and employing
default settings initially yielded statistical results that
appeared to discover many haplotype effects with
incredibly small p-values. However, further investi-
gation revealed that the haplo.stats package, with its

default settings for haplotype frequency threshold,
reported similarly small p-values on permuted data
that eliminated the systematic relationships between
NI and genetic variables, suggesting that the origi-
nally reported p-values did not, in fact, indicate a
strong relationship. When nondefault settings were
used to alleviate the downward bias of the reported
p-values, the promisingly small p-values disap-
peared, leading us to conclude that the seemingly
strong relationships between haplotypes and NI were
not actually present. However, increasing the haplo-
type frequency threshold comes at a cost. Effects of
haplotypes whose frequencies are below the specified
threshold are averaged together by the haplotype
regression model into a “rare” haplotype effect, pre-
cluding the model from capturing individual haplo-
type effects. As the threshold is increased, more
haplotypesare lumped together into this rare category
until only the most commonly occurring haplotypes
remain. It may be, however, that a common haplotype
will convey substantial risk or benefit; if it did, the
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Figure 2 (a) The change in NI per year of schooling depending on the number of copies of the three most common COMT haplotypes for
the set of four markers rs737865-rs740603-rs165722-rs165599. The adjusted NI scores are plotted against grades completed for children
currently in school. In the first column of three plots, which pertains to the ancestral haplotype AGCG, the topmost plot shows only
children having no copies of the AGCG haplotype, and the middle and bottom plots show children whose expected numbers of AGCG
haplotypes are in the top 100 and the top 50, respectively, among all children. The quantity E(AGCG) is the expected number of AGCG
haplotypes in an individual, defined as the weighted sum of possible haplotype counts (0, 1, or 2) times the corresponding probabilities
fit by the model. The adjusted NI scores are obtained by extracting residuals from a regression of NI on the four variables age, sex, rural
versus urban, and SES. The values for grades completed were jittered in the plots by adding small random perturbations to minimize
overplotting and enhance the visibility of the points. The plots suggest that a component of NI is an interaction between the haplotypes
and the number of grades completed, in which the rate of growth of NI scores with grades completed is increasing in the number of
AACG haplotypes, decreasing in the number of AATG haplotypes, but roughly constant in the number of AGCG alleles (the ancestral
allele).(b) Analogous interaction plots for the change in NI per year of schooling depending on the number of copies of the same three
COMT haplotypes, for the case where genotype values have been permuted. A Wald test for the interaction effect of haplotypes and
grade completed yielded a p-value of .065. The fact that changes in slope within columns are observable in the case where the interaction
has been removed by permutation (as opposed to no change in slope with regard to haplotype dosage) suggests that the patterns
observable in Figure 2(a) may be due to chance as well
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haplotype shouldhavebecomeeitherhighly prevalent
in the population or extremely rare through natural
selection. If the rare haplotypes are the ones most
likely to have large genetic effects, but are exactly the
haplotypesweareunable to estimate separatelyusing
a high haplotype frequency threshold, then adopting
a high threshold helps to preserve the statistical
validity of the model (uniformly distributing p-values
under the null hypothesis), but impairs its ability to
detect important biological effects. The fact that the

reported p-values varied so widely in scale (by orders
of magnitude, in fact) when the haplotype frequency
threshold was altered speaks not of any specific
limitation of the particular statistical package
employed, but rather of a general observation that
not every statistical model with given settings is
appropriate to every dataset. For pairs of SNPs, for
instance, haplotype regression did not report exces-
sively small p-values even under the default settings.
Itwasonlywhenapplyinghaplotype regression to sets
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Figure 3 Histograms of simulated p-values for significance of the interaction terms in the haplotype regression model under the null
hypothesis of no association between NI and haplotypes, obtained by permuting the NI values (top row) or permuting the genotype
values (bottom row), for the four markers rs737865-rs740603-rs165722-rs165599. Settings for the haplotype frequency threshold allowed
by the model are 1% (left), 10% (middle), and 15% (right). Also shown are p-values from a Kolmogorov–Smirnov test comparing each set
of p-values to a Uniform distribution. Note that when NI is permuted, a haplotype frequency threshold of 10% is sufficient to yield
uniformly distributed p-values under the null hypothesis of no association, but when genotype is permuted, even 15% is insufficient to
yield uniformly distributed p-values

© 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.

doi:10.1111/jcpp.12120 Schooling and variation in the COMT gene 1063



of three, four, and five SNPs, where many more rare
haplotypes are likely and there is much greater
flexibility for the model to overfit to the large number
of haplotypes, that inflated Type I errors were
observed. A thorough understanding of the statistical
models and methods being applied is essential to
drawing correct inferences about relationships in the
data; without questioning the results obtained here
under default settings and exploring them further, we
would have drawn very different conclusions regard-
ing the effect ofCOMThaplotypes onNI in this dataset.

Conclusions
Genetic variation in COMT did not appear to affect
nonverbal intelligence directly or modulate the effect
of schooling on nonverbal intelligence. This study
contributes to a growing literature on the complexity
of the mechanics of covariation in the genome
(sampled here by a single gene) and the environome
(sampled here by a single, but multifaceted, envi-
ronmental factor – schooling). Studies of both single
cohorts, as exemplified here, and, perhaps, multiple
cohorts with differential exposures to formal educa-
tion, should be carried out in the hopes of under-
standing the molecular bases of individual
differences in achievement as outcomes of schooling.
A special note of caution should be made with regard
to the utilization of off-the-shelf software without
careful scrutiny of the results for possible biases and
departures from statistical validity.
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Key points

• Individual differences in nonverbal intelligence are associated with demographic variables and the effect of
schooling.

• Children from rural areas and of lower SES performed worse than their urban, higher SES peers.

• Children who are out of school even only for 1 year, as a group, perform worse than the children who are
enrolled in school.

• Genetic variation in the COMT gene does not appear to modulate the effect of schooling on nonverbal
intelligence.
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